run_pretrain.py 16.4 KB
Newer Older
G
Guo Sheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import collections
import itertools
import logging
import os
import random
import time
import h5py
G
Guo Sheng 已提交
23
import distutils.util
G
Guo Sheng 已提交
24 25 26 27 28 29 30 31 32 33 34
from functools import partial
from concurrent.futures import ThreadPoolExecutor

import numpy as np

import paddle
import paddle.distributed as dist
from paddle.io import DataLoader, Dataset

from paddlenlp.data import Stack, Tuple, Pad
from paddlenlp.transformers import BertForPretraining, BertModel, BertPretrainingCriterion
35 36
from paddlenlp.transformers import ErnieForPretraining, ErnieModel, ErniePretrainingCriterion
from paddlenlp.transformers import BertTokenizer, ErnieTokenizer
G
Guo Sheng 已提交
37 38 39 40 41 42 43

FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)

MODEL_CLASSES = {
    "bert": (BertForPretraining, BertTokenizer),
44
    "ernie": (ErnieForPretraining, ErnieTokenizer)
G
Guo Sheng 已提交
45 46 47 48 49 50 51 52 53 54 55
}


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--model_type",
        default=None,
        type=str,
        required=True,
        help="Model type selected in the list: " +
56
        ", ".join(MODEL_CLASSES.keys()), )
G
Guo Sheng 已提交
57 58 59 60 61 62 63 64 65 66
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
        help="Path to pre-trained model or shortcut name selected in the list: "
        + ", ".join(
            sum([
                list(classes[-1].pretrained_init_configuration.keys())
                for classes in MODEL_CLASSES.values()
67
            ], [])), )
G
Guo Sheng 已提交
68 69 70 71 72
    parser.add_argument(
        "--input_dir",
        default=None,
        type=str,
        required=True,
73
        help="The input directory where the data will be read from.", )
G
Guo Sheng 已提交
74 75 76 77 78
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
79
        help="The output directory where the model predictions and checkpoints will be written.",
G
Guo Sheng 已提交
80 81 82 83 84 85 86 87 88 89 90 91
    )

    parser.add_argument(
        "--max_predictions_per_seq",
        default=80,
        type=int,
        help="The maximum total of masked tokens in input sequence")

    parser.add_argument(
        "--batch_size",
        default=8,
        type=int,
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
        help="Batch size per GPU/CPU for training.", )
    parser.add_argument(
        "--learning_rate",
        default=5e-5,
        type=float,
        help="The initial learning rate for Adam.")
    parser.add_argument(
        "--weight_decay",
        default=0.0,
        type=float,
        help="Weight decay if we apply some.")
    parser.add_argument(
        "--adam_epsilon",
        default=1e-8,
        type=float,
        help="Epsilon for Adam optimizer.")
    parser.add_argument(
        "--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
G
Guo Sheng 已提交
110 111 112 113
    parser.add_argument(
        "--num_train_epochs",
        default=3,
        type=int,
114
        help="Total number of training epochs to perform.", )
G
Guo Sheng 已提交
115 116 117 118
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
119
        help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
G
Guo Sheng 已提交
120
    )
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
    parser.add_argument(
        "--warmup_steps",
        default=0,
        type=int,
        help="Linear warmup over warmup_steps.")

    parser.add_argument(
        "--logging_steps",
        type=int,
        default=500,
        help="Log every X updates steps.")
    parser.add_argument(
        "--save_steps",
        type=int,
        default=500,
        help="Save checkpoint every X updates steps.")
    parser.add_argument(
        "--seed", type=int, default=42, help="random seed for initialization")
    parser.add_argument(
        "--n_cards",
        default=1,
        type=int,
        help="Number cards for the training, only support multi cards in the gpu."
    )
    parser.add_argument(
        "--select_device",
        type=str,
        default="gpu",
        help="Device for selecting for the training.")
G
Guo Sheng 已提交
150 151 152 153 154 155 156 157
    parser.add_argument("--use_amp",
                        type=distutils.util.strtobool,
                        default=False,
                        help="Enable mixed precision training.")
    parser.add_argument("--scale_loss",
                        type=float,
                        default=2**15,
                        help="The value of scale_loss for fp16.")
G
Guo Sheng 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
    args = parser.parse_args()
    return args


def set_seed(args):
    random.seed(args.seed + paddle.distributed.get_rank())
    np.random.seed(args.seed + paddle.distributed.get_rank())
    paddle.seed(args.seed + paddle.distributed.get_rank())


class WorkerInitObj(object):
    def __init__(self, seed):
        self.seed = seed

    def __call__(self, id):
        np.random.seed(seed=self.seed + id)
        random.seed(self.seed + id)


def create_pretraining_dataset(input_file, max_pred_length, shared_list, args,
                               worker_init):
179 180
    train_data = PretrainingDataset(
        input_file=input_file, max_pred_length=max_pred_length)
G
Guo Sheng 已提交
181
    # files have been sharded, no need to dispatch again
182 183
    train_batch_sampler = paddle.io.BatchSampler(
        train_data, batch_size=args.batch_size, shuffle=True)
G
Guo Sheng 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201

    # DataLoader cannot be pickled because of its place.
    # If it can be pickled, use global function instead of lambda and use
    # ProcessPoolExecutor instead of ThreadPoolExecutor to prefetch.
    def _collate_data(data, stack_fn=Stack()):
        num_fields = len(data[0])
        out = [None] * num_fields
        # input_ids, segment_ids, input_mask, masked_lm_positions,
        # masked_lm_labels, next_sentence_labels, mask_token_num
        for i in (0, 1, 2, 5):
            out[i] = stack_fn([x[i] for x in data])
        batch_size, seq_length = out[0].shape
        size = num_mask = sum(len(x[3]) for x in data)
        # Padding for divisibility by 8 for fp16 or int8 usage
        if size % 8 != 0:
            size += 8 - (size % 8)
        # masked_lm_positions
        # Organize as a 1D tensor for gather or use gather_nd
202
        out[3] = np.full(size, 0, dtype=np.int32)
G
Guo Sheng 已提交
203 204 205 206 207 208 209 210 211 212 213 214
        # masked_lm_labels
        out[4] = np.full([size, 1], -1, dtype=np.int64)
        mask_token_num = 0
        for i, x in enumerate(data):
            for j, pos in enumerate(x[3]):
                out[3][mask_token_num] = i * seq_length + pos
                out[4][mask_token_num] = x[4][j]
                mask_token_num += 1
        # mask_token_num
        out.append(np.asarray([mask_token_num], dtype=np.float32))
        return out

215 216 217 218 219 220 221
    train_data_loader = DataLoader(
        dataset=train_data,
        batch_sampler=train_batch_sampler,
        collate_fn=_collate_data,
        num_workers=0,
        worker_init_fn=worker_init,
        return_list=True)
G
Guo Sheng 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
    return train_data_loader, input_file


class PretrainingDataset(Dataset):
    def __init__(self, input_file, max_pred_length):
        self.input_file = input_file
        self.max_pred_length = max_pred_length
        f = h5py.File(input_file, "r")
        keys = [
            'input_ids', 'input_mask', 'segment_ids', 'masked_lm_positions',
            'masked_lm_ids', 'next_sentence_labels'
        ]
        self.inputs = [np.asarray(f[key][:]) for key in keys]
        f.close()

    def __len__(self):
        'Denotes the total number of samples'
        return len(self.inputs[0])

    def __getitem__(self, index):

        [
            input_ids, input_mask, segment_ids, masked_lm_positions,
            masked_lm_ids, next_sentence_labels
        ] = [
            input[index].astype(np.int64)
            if indice < 5 else np.asarray(input[index].astype(np.int64))
            for indice, input in enumerate(self.inputs)
        ]
        # TODO: whether to use reversed mask by changing 1s and 0s to be
        # consistent with nv bert
253 254
        input_mask = (1 - np.reshape(
            input_mask.astype(np.float32), [1, 1, input_mask.shape[0]])) * -1e9
G
Guo Sheng 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280

        index = self.max_pred_length
        # store number of  masked tokens in index
        # outputs of torch.nonzero diff with that of numpy.nonzero by zip
        padded_mask_indices = (masked_lm_positions == 0).nonzero()[0]
        if len(padded_mask_indices) != 0:
            index = padded_mask_indices[0].item()
            mask_token_num = index
        else:
            index = 0
            mask_token_num = 0
        # masked_lm_labels = np.full(input_ids.shape, -1, dtype=np.int64)
        # masked_lm_labels[masked_lm_positions[:index]] = masked_lm_ids[:index]
        masked_lm_labels = masked_lm_ids[:index]
        masked_lm_positions = masked_lm_positions[:index]
        # softmax_with_cross_entropy enforce last dim size equal 1
        masked_lm_labels = np.expand_dims(masked_lm_labels, axis=-1)
        next_sentence_labels = np.expand_dims(next_sentence_labels, axis=-1)

        return [
            input_ids, segment_ids, input_mask, masked_lm_positions,
            masked_lm_labels, next_sentence_labels
        ]


def do_train(args):
281
    paddle.set_device(args.select_device)
G
Guo Sheng 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
    if paddle.distributed.get_world_size() > 1:
        paddle.distributed.init_parallel_env()

    set_seed(args)
    worker_init = WorkerInitObj(args.seed + paddle.distributed.get_rank())

    args.model_type = args.model_type.lower()
    model_class, tokenizer_class = MODEL_CLASSES[args.model_type]

    tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path)

    model = BertForPretraining(
        BertModel(**model_class.pretrained_init_configuration[
            args.model_name_or_path]))
    criterion = BertPretrainingCriterion(
297 298
        getattr(model, BertForPretraining.base_model_prefix).config[
            "vocab_size"])
G
Guo Sheng 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
    if paddle.distributed.get_world_size() > 1:
        model = paddle.DataParallel(model)

    # If use defalut last_epoch, lr of the first iteration is 0.
    # Use `last_epoch = 0` to be consistent with nv bert.
    lr_scheduler = paddle.optimizer.lr.LambdaDecay(
        args.learning_rate,
        lambda current_step, num_warmup_steps=args.warmup_steps,
        num_training_steps=args.max_steps if args.max_steps > 0 else
        (len(train_data_loader) * args.num_train_epochs): float(
            current_step) / float(max(1, num_warmup_steps))
        if current_step < num_warmup_steps else max(
            0.0,
            float(num_training_steps - current_step) / float(
                max(1, num_training_steps - num_warmup_steps))),
        last_epoch=0)

    optimizer = paddle.optimizer.AdamW(
        learning_rate=lr_scheduler,
        epsilon=args.adam_epsilon,
        parameters=model.parameters(),
        weight_decay=args.weight_decay,
        apply_decay_param_fun=lambda x: x in [
            p.name for n, p in model.named_parameters()
            if not any(nd in n for nd in ["bias", "norm"])
        ])
G
Guo Sheng 已提交
325 326
    if args.use_amp:
        scaler = paddle.amp.GradScaler(init_loss_scaling=args.scale_loss)
G
Guo Sheng 已提交
327 328 329 330 331 332 333

    pool = ThreadPoolExecutor(1)
    global_step = 0
    tic_train = time.time()
    for epoch in range(args.num_train_epochs):
        files = [
            os.path.join(args.input_dir, f) for f in os.listdir(args.input_dir)
334 335
            if os.path.isfile(os.path.join(args.input_dir, f)) and "training" in
            f
G
Guo Sheng 已提交
336 337 338 339 340 341 342 343 344 345
        ]
        files.sort()
        num_files = len(files)
        random.Random(args.seed + epoch).shuffle(files)
        f_start_id = 0

        shared_file_list = {}

        if paddle.distributed.get_world_size() > num_files:
            remainder = paddle.distributed.get_world_size() % num_files
346 347 348 349
            data_file = files[(
                f_start_id * paddle.distributed.get_world_size() +
                paddle.distributed.get_rank() + remainder * f_start_id) %
                              num_files]
G
Guo Sheng 已提交
350 351 352 353 354 355 356 357
        else:
            data_file = files[(f_start_id * paddle.distributed.get_world_size()
                               + paddle.distributed.get_rank()) % num_files]

        previous_file = data_file

        train_data_loader, _ = create_pretraining_dataset(
            data_file, args.max_predictions_per_seq, shared_file_list, args,
358
            worker_init)
G
Guo Sheng 已提交
359 360

        # TODO(guosheng): better way to process single file
361 362
        single_file = True if f_start_id + 1 == len(files) else False

G
Guo Sheng 已提交
363
        for f_id in range(f_start_id, len(files)):
364
            if not single_file and f_id == f_start_id:
G
Guo Sheng 已提交
365 366
                continue
            if paddle.distributed.get_world_size() > num_files:
367 368 369 370
                data_file = files[(
                    f_id * paddle.distributed.get_world_size() +
                    paddle.distributed.get_rank() + remainder * f_id) %
                                  num_files]
G
Guo Sheng 已提交
371 372 373 374 375 376 377 378 379 380 381 382 383
            else:
                data_file = files[(f_id * paddle.distributed.get_world_size() +
                                   paddle.distributed.get_rank()) % num_files]

            previous_file = data_file
            dataset_future = pool.submit(create_pretraining_dataset, data_file,
                                         args.max_predictions_per_seq,
                                         shared_file_list, args, worker_init)
            for step, batch in enumerate(train_data_loader):
                global_step += 1
                (input_ids, segment_ids, input_mask, masked_lm_positions,
                 masked_lm_labels, next_sentence_labels,
                 masked_lm_scale) = batch
G
Guo Sheng 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
                with paddle.amp.auto_cast(
                        args.use_amp,
                        custom_white_list=["layer_norm", "softmax", "gelu"]):
                    prediction_scores, seq_relationship_score = model(
                        input_ids=input_ids,
                        token_type_ids=segment_ids,
                        attention_mask=input_mask,
                        masked_positions=masked_lm_positions)
                    loss = criterion(prediction_scores, seq_relationship_score,
                                    masked_lm_labels, next_sentence_labels,
                                    masked_lm_scale)
                if args.use_amp:
                    scaler.scale(loss).backward()
                    scaler.minimize(optimizer, loss)
                else:
                    loss.backward()
                    optimizer.step()
                lr_scheduler.step()
                optimizer.clear_gradients()
G
Guo Sheng 已提交
403
                if global_step % args.logging_steps == 0:
404
                    if (not args.n_cards > 1
G
Guo Sheng 已提交
405 406 407 408 409 410 411
                        ) or paddle.distributed.get_rank() == 0:
                        logger.info(
                            "global step %d, epoch: %d, batch: %d, loss: %f, speed: %.2f step/s"
                            % (global_step, epoch, step, loss,
                               args.logging_steps / (time.time() - tic_train)))
                    tic_train = time.time()
                if global_step % args.save_steps == 0:
412
                    if (not args.n_cards > 1
G
Guo Sheng 已提交
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
                        ) or paddle.distributed.get_rank() == 0:
                        output_dir = os.path.join(args.output_dir,
                                                  "model_%d" % global_step)
                        if not os.path.exists(output_dir):
                            os.makedirs(output_dir)
                        # need better way to get inner model of DataParallel
                        model_to_save = model._layers if isinstance(
                            model, paddle.DataParallel) else model
                        model_to_save.save_pretrained(output_dir)
                        tokenizer.save_pretrained(output_dir)
                        paddle.save(
                            optimizer.state_dict(),
                            os.path.join(output_dir, "model_state.pdopt"))
                if global_step >= args.max_steps:
                    del train_data_loader
                    return

            del train_data_loader
            train_data_loader, data_file = dataset_future.result(timeout=None)


if __name__ == "__main__":
    args = parse_args()
436 437
    if args.n_cards > 1 and args.select_device == "gpu":
        paddle.distributed.spawn(do_train, args=(args, ), nprocs=args.n_cards)
G
Guo Sheng 已提交
438 439
    else:
        do_train(args)