dali.py 8.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division

import os

from nvidia.dali.pipeline import Pipeline
import nvidia.dali.ops as ops
import nvidia.dali.types as types
from nvidia.dali.plugin.paddle import DALIGenericIterator

import paddle
from paddle import fluid


class HybridTrainPipe(Pipeline):
R
ruri 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
    def __init__(self,
                 file_root,
                 file_list,
                 batch_size,
                 resize_shorter,
                 crop,
                 min_area,
                 lower,
                 upper,
                 interp,
                 mean,
                 std,
                 device_id,
                 shard_id=0,
                 num_shards=1,
                 random_shuffle=True,
                 num_threads=4,
                 seed=42):
        super(HybridTrainPipe, self).__init__(
            batch_size, num_threads, device_id, seed=seed)
        self.input = ops.FileReader(
            file_root=file_root,
            file_list=file_list,
            shard_id=shard_id,
            num_shards=num_shards,
            random_shuffle=random_shuffle)
55 56 57 58 59 60 61 62 63 64 65 66
        # set internal nvJPEG buffers size to handle full-sized ImageNet images
        # without additional reallocations
        device_memory_padding = 211025920
        host_memory_padding = 140544512
        self.decode = ops.ImageDecoderRandomCrop(
            device='mixed',
            output_type=types.RGB,
            device_memory_padding=device_memory_padding,
            host_memory_padding=host_memory_padding,
            random_aspect_ratio=[lower, upper],
            random_area=[min_area, 1.0],
            num_attempts=100)
R
ruri 已提交
67 68
        self.res = ops.Resize(
            device='gpu', resize_x=crop, resize_y=crop, interp_type=interp)
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
        self.cmnp = ops.CropMirrorNormalize(
            device="gpu",
            output_dtype=types.FLOAT,
            output_layout=types.NCHW,
            crop=(crop, crop),
            image_type=types.RGB,
            mean=mean,
            std=std)
        self.coin = ops.CoinFlip(probability=0.5)
        self.to_int64 = ops.Cast(dtype=types.INT64, device="gpu")

    def define_graph(self):
        rng = self.coin()
        jpegs, labels = self.input(name="Reader")
        images = self.decode(jpegs)
        images = self.res(images)
        output = self.cmnp(images.gpu(), mirror=rng)
        return [output, self.to_int64(labels.gpu())]

    def __len__(self):
        return self.epoch_size("Reader")


class HybridValPipe(Pipeline):
R
ruri 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    def __init__(self,
                 file_root,
                 file_list,
                 batch_size,
                 resize_shorter,
                 crop,
                 interp,
                 mean,
                 std,
                 device_id,
                 shard_id=0,
                 num_shards=1,
                 random_shuffle=False,
                 num_threads=4,
                 seed=42):
        super(HybridValPipe, self).__init__(
            batch_size, num_threads, device_id, seed=seed)
        self.input = ops.FileReader(
            file_root=file_root,
            file_list=file_list,
            shard_id=shard_id,
            num_shards=num_shards,
            random_shuffle=random_shuffle)
116
        self.decode = ops.ImageDecoder(device="mixed", output_type=types.RGB)
R
ruri 已提交
117 118
        self.res = ops.Resize(
            device="gpu", resize_shorter=resize_shorter, interp_type=interp)
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
        self.cmnp = ops.CropMirrorNormalize(
            device="gpu",
            output_dtype=types.FLOAT,
            output_layout=types.NCHW,
            crop=(crop, crop),
            image_type=types.RGB,
            mean=mean,
            std=std)
        self.to_int64 = ops.Cast(dtype=types.INT64, device="gpu")

    def define_graph(self):
        jpegs, labels = self.input(name="Reader")
        images = self.decode(jpegs)
        images = self.res(images)
        output = self.cmnp(images)
        return [output, self.to_int64(labels.gpu())]

    def __len__(self):
        return self.epoch_size("Reader")


def build(settings, mode='train'):
    env = os.environ
    assert settings.use_gpu, "gpu training is required for DALI"
    assert not settings.use_mixup, "mixup is not supported by DALI reader"
    assert not settings.use_aa, "auto augment is not supported by DALI reader"
    assert float(env.get('FLAGS_fraction_of_gpu_memory_to_use', 0.92)) < 0.9, \
        "Please leave enough GPU memory for DALI workspace, e.g., by setting" \
        " `export FLAGS_fraction_of_gpu_memory_to_use=0.8`"

    file_root = settings.data_dir
    bs = settings.batch_size
    assert bs % paddle.fluid.core.get_cuda_device_count() == 0, \
        "batch size must be multiple of number of devices"
    batch_size = bs // paddle.fluid.core.get_cuda_device_count()

    mean = [v * 255 for v in settings.image_mean]
    std = [v * 255 for v in settings.image_std]
R
ruri 已提交
157
    crop = settings.image_shape[1]
158 159 160 161 162 163 164
    resize_shorter = settings.resize_short_size
    min_area = settings.lower_scale
    lower = settings.lower_ratio
    upper = settings.upper_ratio

    interp = settings.interpolation or 1  # default to linear
    interp_map = {
R
ruri 已提交
165 166 167
        0: types.INTERP_NN,  # cv2.INTER_NEAREST
        1: types.INTERP_LINEAR,  # cv2.INTER_LINEAR
        2: types.INTERP_CUBIC,  # cv2.INTER_CUBIC
168 169 170 171 172 173 174 175 176 177 178 179 180 181
        4: types.INTERP_LANCZOS3,  # XXX use LANCZOS3 for cv2.INTER_LANCZOS4
    }
    assert interp in interp_map, "interpolation method not supported by DALI"
    interp = interp_map[interp]

    if mode != 'train':
        p = fluid.framework.cuda_places()[0]
        place = fluid.core.Place()
        place.set_place(p)
        device_id = place.gpu_device_id()
        file_list = os.path.join(file_root, 'val_list.txt')
        if not os.path.exists(file_list):
            file_list = None
            file_root = os.path.join(file_root, 'val')
R
ruri 已提交
182 183 184 185 186 187 188 189 190 191
        pipe = HybridValPipe(
            file_root,
            file_list,
            batch_size,
            resize_shorter,
            crop,
            interp,
            mean,
            std,
            device_id=device_id)
192
        pipe.build()
R
ruri 已提交
193 194 195 196 197 198
        return DALIGenericIterator(
            pipe, ['feed_image', 'feed_label'],
            size=len(pipe),
            dynamic_shape=True,
            fill_last_batch=False,
            last_batch_padded=True)
199 200 201 202 203 204 205 206 207 208

    file_list = os.path.join(file_root, 'train_list.txt')
    if not os.path.exists(file_list):
        file_list = None
        file_root = os.path.join(file_root, 'train')

    if 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env:
        shard_id = int(env['PADDLE_TRAINER_ID'])
        num_shards = int(env['PADDLE_TRAINERS_NUM'])
        device_id = int(env['FLAGS_selected_gpus'])
R
ruri 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
        pipe = HybridTrainPipe(
            file_root,
            file_list,
            batch_size,
            resize_shorter,
            crop,
            min_area,
            lower,
            upper,
            interp,
            mean,
            std,
            device_id,
            shard_id,
            num_shards,
            seed=42 + shard_id)
225 226 227 228 229 230 231 232 233 234 235 236
        pipe.build()
        pipelines = [pipe]
        sample_per_shard = len(pipe) // num_shards
    else:
        pipelines = []
        places = fluid.framework.cuda_places()
        num_shards = len(places)
        for idx, p in enumerate(places):
            place = fluid.core.Place()
            place.set_place(p)
            device_id = place.gpu_device_id()
            pipe = HybridTrainPipe(
R
ruri 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
                file_root,
                file_list,
                batch_size,
                resize_shorter,
                crop,
                min_area,
                lower,
                upper,
                interp,
                mean,
                std,
                device_id,
                idx,
                num_shards,
                seed=42 + idx)
252 253 254 255 256 257 258 259 260 261 262 263 264 265
            pipe.build()
            pipelines.append(pipe)
        sample_per_shard = len(pipelines[0])

    return DALIGenericIterator(
        pipelines, ['feed_image', 'feed_label'], size=sample_per_shard)


def train(settings):
    return build(settings, 'train')


def val(settings):
    return build(settings, 'val')