dali.py 8.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division

import os

from nvidia.dali.pipeline import Pipeline
import nvidia.dali.ops as ops
import nvidia.dali.types as types
from nvidia.dali.plugin.paddle import DALIGenericIterator

import paddle
from paddle import fluid


class HybridTrainPipe(Pipeline):
    def __init__(self, file_root, file_list, batch_size, resize_shorter,
                 crop, min_area, lower, upper, interp, mean, std,
                 device_id, shard_id=0, num_shards=1, random_shuffle=True,
                 num_threads=4, seed=42):
        super(HybridTrainPipe, self).__init__(batch_size,
                                              num_threads,
                                              device_id,
                                              seed=seed)
        self.input = ops.FileReader(file_root=file_root,
                                    file_list=file_list,
                                    shard_id=shard_id,
                                    num_shards=num_shards,
                                    random_shuffle=random_shuffle)
        # set internal nvJPEG buffers size to handle full-sized ImageNet images
        # without additional reallocations
        device_memory_padding = 211025920
        host_memory_padding = 140544512
        self.decode = ops.ImageDecoderRandomCrop(
            device='mixed',
            output_type=types.RGB,
            device_memory_padding=device_memory_padding,
            host_memory_padding=host_memory_padding,
            random_aspect_ratio=[lower, upper],
            random_area=[min_area, 1.0],
            num_attempts=100)
        self.res = ops.Resize(device='gpu',
                              resize_x=crop,
                              resize_y=crop,
                              interp_type=interp)
        self.cmnp = ops.CropMirrorNormalize(
            device="gpu",
            output_dtype=types.FLOAT,
            output_layout=types.NCHW,
            crop=(crop, crop),
            image_type=types.RGB,
            mean=mean,
            std=std)
        self.coin = ops.CoinFlip(probability=0.5)
        self.to_int64 = ops.Cast(dtype=types.INT64, device="gpu")

    def define_graph(self):
        rng = self.coin()
        jpegs, labels = self.input(name="Reader")
        images = self.decode(jpegs)
        images = self.res(images)
        output = self.cmnp(images.gpu(), mirror=rng)
        return [output, self.to_int64(labels.gpu())]

    def __len__(self):
        return self.epoch_size("Reader")


class HybridValPipe(Pipeline):
    def __init__(self, file_root, file_list, batch_size,
                 resize_shorter, crop, interp, mean, std,
                 device_id, shard_id=0, num_shards=1, random_shuffle=False,
                 num_threads=4, seed=42):
        super(HybridValPipe, self).__init__(batch_size,
                                            num_threads,
                                            device_id,
                                            seed=seed)
        self.input = ops.FileReader(file_root=file_root,
                                    file_list=file_list,
                                    shard_id=shard_id,
                                    num_shards=num_shards,
                                    random_shuffle=random_shuffle)
        self.decode = ops.ImageDecoder(device="mixed", output_type=types.RGB)
        self.res = ops.Resize(device="gpu",
                              resize_shorter=resize_shorter,
                              interp_type=interp)
        self.cmnp = ops.CropMirrorNormalize(
            device="gpu",
            output_dtype=types.FLOAT,
            output_layout=types.NCHW,
            crop=(crop, crop),
            image_type=types.RGB,
            mean=mean,
            std=std)
        self.to_int64 = ops.Cast(dtype=types.INT64, device="gpu")

    def define_graph(self):
        jpegs, labels = self.input(name="Reader")
        images = self.decode(jpegs)
        images = self.res(images)
        output = self.cmnp(images)
        return [output, self.to_int64(labels.gpu())]

    def __len__(self):
        return self.epoch_size("Reader")


def build(settings, mode='train'):
    env = os.environ
    assert settings.use_gpu, "gpu training is required for DALI"
    assert not settings.use_mixup, "mixup is not supported by DALI reader"
    assert not settings.use_aa, "auto augment is not supported by DALI reader"
    assert float(env.get('FLAGS_fraction_of_gpu_memory_to_use', 0.92)) < 0.9, \
        "Please leave enough GPU memory for DALI workspace, e.g., by setting" \
        " `export FLAGS_fraction_of_gpu_memory_to_use=0.8`"

    file_root = settings.data_dir
    bs = settings.batch_size
    assert bs % paddle.fluid.core.get_cuda_device_count() == 0, \
        "batch size must be multiple of number of devices"
    batch_size = bs // paddle.fluid.core.get_cuda_device_count()

    mean = [v * 255 for v in settings.image_mean]
    std = [v * 255 for v in settings.image_std]
    crop = settings.crop_size
    resize_shorter = settings.resize_short_size
    min_area = settings.lower_scale
    lower = settings.lower_ratio
    upper = settings.upper_ratio

    interp = settings.interpolation or 1  # default to linear
    interp_map = {
        0: types.INTERP_NN,        # cv2.INTER_NEAREST
        1: types.INTERP_LINEAR,    # cv2.INTER_LINEAR
        2: types.INTERP_CUBIC,     # cv2.INTER_CUBIC
        4: types.INTERP_LANCZOS3,  # XXX use LANCZOS3 for cv2.INTER_LANCZOS4
    }
    assert interp in interp_map, "interpolation method not supported by DALI"
    interp = interp_map[interp]

    if mode != 'train':
        p = fluid.framework.cuda_places()[0]
        place = fluid.core.Place()
        place.set_place(p)
        device_id = place.gpu_device_id()
        file_list = os.path.join(file_root, 'val_list.txt')
        if not os.path.exists(file_list):
            file_list = None
            file_root = os.path.join(file_root, 'val')
        pipe = HybridValPipe(file_root, file_list, batch_size,
                             resize_shorter, crop, interp, mean, std,
                             device_id=device_id)
        pipe.build()
        return DALIGenericIterator(pipe, ['feed_image', 'feed_label'],
                                   size=len(pipe), dynamic_shape=True,
                                   fill_last_batch=False,
                                   last_batch_padded=True)

    file_list = os.path.join(file_root, 'train_list.txt')
    if not os.path.exists(file_list):
        file_list = None
        file_root = os.path.join(file_root, 'train')

    if 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env:
        shard_id = int(env['PADDLE_TRAINER_ID'])
        num_shards = int(env['PADDLE_TRAINERS_NUM'])
        device_id = int(env['FLAGS_selected_gpus'])
        pipe = HybridTrainPipe(file_root, file_list, batch_size,
                               resize_shorter, crop, min_area,
                               lower, upper, interp, mean, std,
                               device_id, shard_id, num_shards,
                               seed=42 + shard_id)
        pipe.build()
        pipelines = [pipe]
        sample_per_shard = len(pipe) // num_shards
    else:
        pipelines = []
        places = fluid.framework.cuda_places()
        num_shards = len(places)
        for idx, p in enumerate(places):
            place = fluid.core.Place()
            place.set_place(p)
            device_id = place.gpu_device_id()
            pipe = HybridTrainPipe(
                file_root, file_list, batch_size,
                resize_shorter, crop, min_area,
                lower, upper, interp, mean, std,
                device_id, idx, num_shards, seed=42 + idx)
            pipe.build()
            pipelines.append(pipe)
        sample_per_shard = len(pipelines[0])

    return DALIGenericIterator(
        pipelines, ['feed_image', 'feed_label'], size=sample_per_shard)


def train(settings):
    return build(settings, 'train')


def val(settings):
    return build(settings, 'val')