model.py 6.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import argparse
import time

import paddle
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler

SEED = 90
DTYPE = "float32"

# random seed must set before configuring the network.
fluid.default_startup_program().random_seed = SEED


def parse_args():
    parser = argparse.ArgumentParser("mnist model benchmark.")
    parser.add_argument(
        '--batch_size', type=int, default=128, help='The minibatch size.')
    parser.add_argument(
P
Paddle CI 已提交
25
        '--iterations', type=int, default=35, help='The number of minibatches.')
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
    parser.add_argument(
        '--pass_num', type=int, default=5, help='The number of passes.')
    parser.add_argument(
        '--device',
        type=str,
        default='GPU',
        choices=['CPU', 'GPU'],
        help='The device type.')
    parser.add_argument(
        '--infer_only', action='store_true', help='If set, run forward only.')
    parser.add_argument(
        '--use_cprof', action='store_true', help='If set, use cProfile.')
    parser.add_argument(
        '--use_nvprof',
        action='store_true',
        help='If set, use nvprof for CUDA.')
    args = parser.parse_args()
    return args


def print_arguments(args):
    vars(args)['use_nvprof'] = (vars(args)['use_nvprof'] and
                                vars(args)['device'] == 'GPU')
    print('-----------  Configuration Arguments -----------')
    for arg, value in sorted(vars(args).iteritems()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------------')


def cnn_model(data):
    conv_pool_1 = fluid.nets.simple_img_conv_pool(
        input=data,
        filter_size=5,
        num_filters=20,
        pool_size=2,
        pool_stride=2,
        act="relu")
    conv_pool_2 = fluid.nets.simple_img_conv_pool(
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        pool_size=2,
        pool_stride=2,
        act="relu")

    # TODO(dzhwinter) : refine the initializer and random seed settting
    SIZE = 10
    input_shape = conv_pool_2.shape
    param_shape = [reduce(lambda a, b: a * b, input_shape[1:], 1)] + [SIZE]
    scale = (2.0 / (param_shape[0]**2 * SIZE))**0.5

    predict = fluid.layers.fc(
        input=conv_pool_2,
        size=SIZE,
        act="softmax",
        param_attr=fluid.param_attr.ParamAttr(
            initializer=fluid.initializer.NormalInitializer(
                loc=0.0, scale=scale)))
    return predict


def eval_test(exe, batch_acc, batch_size_tensor, inference_program):
    test_reader = paddle.batch(
        paddle.dataset.mnist.test(), batch_size=args.batch_size)
    test_pass_acc = fluid.average.WeightedAverage()
    for batch_id, data in enumerate(test_reader()):
        img_data = np.array(map(lambda x: x[0].reshape([1, 28, 28]),
                                data)).astype(DTYPE)
        y_data = np.array(map(lambda x: x[1], data)).astype("int64")
        y_data = y_data.reshape([len(y_data), 1])

        acc, weight = exe.run(inference_program,
                              feed={"pixel": img_data,
                                    "label": y_data},
                              fetch_list=[batch_acc, batch_size_tensor])
        test_pass_acc.add(value=acc, weight=weight)
        pass_acc = test_pass_acc.eval()
    return pass_acc


def run_benchmark(model, args):
    if args.use_cprof:
        pr = cProfile.Profile()
        pr.enable()
    start_time = time.time()
    # Input data
    images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    # Train program
    predict = model(images)
    cost = fluid.layers.cross_entropy(input=predict, label=label)
    avg_cost = fluid.layers.mean(x=cost)

    # Evaluator
    batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
    batch_acc = fluid.layers.accuracy(
        input=predict, label=label, total=batch_size_tensor)

    # inference program
    inference_program = fluid.default_main_program().clone()
    with fluid.program_guard(inference_program):
        inference_program = fluid.io.get_inference_program(
            target_vars=[batch_acc, batch_size_tensor])

    # Optimization
    opt = fluid.optimizer.AdamOptimizer(
        learning_rate=0.001, beta1=0.9, beta2=0.999)
    opt.minimize(avg_cost)

    fluid.memory_optimize(fluid.default_main_program())

    # Initialize executor
    place = fluid.CPUPlace() if args.device == 'CPU' else fluid.CUDAPlace(0)
    exe = fluid.Executor(place)

    # Parameter initialization
    exe.run(fluid.default_startup_program())

    # Reader
    train_reader = paddle.batch(
        paddle.dataset.mnist.train(), batch_size=args.batch_size)

    accuracy = fluid.average.WeightedAverage()
    for pass_id in range(args.pass_num):
        accuracy.reset()
        pass_start = time.time()
        every_pass_loss = []
        for batch_id, data in enumerate(train_reader()):
            img_data = np.array(
                map(lambda x: x[0].reshape([1, 28, 28]), data)).astype(DTYPE)
            y_data = np.array(map(lambda x: x[1], data)).astype("int64")
            y_data = y_data.reshape([len(y_data), 1])

            start = time.time()
            loss, acc, weight = exe.run(
                fluid.default_main_program(),
                feed={"pixel": img_data,
                      "label": y_data},
                fetch_list=[avg_cost, batch_acc, batch_size_tensor]
            )  # The accuracy is the accumulation of batches, but not the current batch.
            end = time.time()
            accuracy.add(value=acc, weight=weight)
            every_pass_loss.append(loss)
P
Paddle CI 已提交
170 171
            print("Pass = %d, Iter = %d, Loss = %f, Accuracy = %f" %
                  (pass_id, batch_id, loss, acc))
172 173 174 175 176 177 178 179

        pass_end = time.time()

        train_avg_acc = accuracy.eval()
        train_avg_loss = np.mean(every_pass_loss)
        test_avg_acc = eval_test(exe, batch_acc, batch_size_tensor,
                                 inference_program)

P
Paddle CI 已提交
180 181 182 183
        print(
            "pass=%d, train_avg_acc=%f,train_avg_loss=%f, test_avg_acc=%f, elapse=%f"
            % (pass_id, train_avg_acc, train_avg_loss, test_avg_acc,
               (pass_end - pass_start)))
G
guochaorong 已提交
184 185
        #Note: The following logs are special for CE monitoring.
        #Other situations do not need to care about these logs.
186 187 188 189
        print ("kpis	train_acc	%f" % train_avg_acc)
        print ("kpis	train_cost	%f" % train_avg_loss)  
        print ("kpis	test_acc	%f" % test_avg_acc)  
        print ("kpis	train_duration	%f" % (pass_end - pass_start))  
190 191 192 193 194 195 196 197 198 199


if __name__ == '__main__':
    args = parse_args()
    print_arguments(args)
    if args.use_nvprof and args.device == 'GPU':
        with profiler.cuda_profiler("cuda_profiler.txt", 'csv') as nvprof:
            run_benchmark(cnn_model, args)
    else:
        run_benchmark(cnn_model, args)