Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
49e3254c
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
49e3254c
编写于
7月 25, 2018
作者:
G
guochaorong
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add smoke model for superiving under CE
上级
ce6ba111
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
211 addition
and
0 deletion
+211
-0
fluid/mnist/.run.sh
fluid/mnist/.run.sh
+5
-0
fluid/mnist/model.py
fluid/mnist/model.py
+206
-0
未找到文件。
fluid/mnist/.run.sh
0 → 100755
浏览文件 @
49e3254c
#!/bin/bash
rm
-rf
*
_factor.txt
model_file
=
'model.py'
python
$model_file
--batch_size
256
--pass_num
2
--device
CPU
fluid/mnist/model.py
0 → 100644
浏览文件 @
49e3254c
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
numpy
as
np
import
argparse
import
time
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.profiler
as
profiler
SEED
=
90
DTYPE
=
"float32"
# random seed must set before configuring the network.
fluid
.
default_startup_program
().
random_seed
=
SEED
def
parse_args
():
parser
=
argparse
.
ArgumentParser
(
"mnist model benchmark."
)
parser
.
add_argument
(
'--batch_size'
,
type
=
int
,
default
=
128
,
help
=
'The minibatch size.'
)
parser
.
add_argument
(
'--iterations'
,
type
=
int
,
default
=
35
,
help
=
'The number of minibatches.'
)
parser
.
add_argument
(
'--pass_num'
,
type
=
int
,
default
=
5
,
help
=
'The number of passes.'
)
parser
.
add_argument
(
'--device'
,
type
=
str
,
default
=
'GPU'
,
choices
=
[
'CPU'
,
'GPU'
],
help
=
'The device type.'
)
parser
.
add_argument
(
'--infer_only'
,
action
=
'store_true'
,
help
=
'If set, run forward only.'
)
parser
.
add_argument
(
'--use_cprof'
,
action
=
'store_true'
,
help
=
'If set, use cProfile.'
)
parser
.
add_argument
(
'--use_nvprof'
,
action
=
'store_true'
,
help
=
'If set, use nvprof for CUDA.'
)
args
=
parser
.
parse_args
()
return
args
def
print_arguments
(
args
):
vars
(
args
)[
'use_nvprof'
]
=
(
vars
(
args
)[
'use_nvprof'
]
and
vars
(
args
)[
'device'
]
==
'GPU'
)
print
(
'----------- Configuration Arguments -----------'
)
for
arg
,
value
in
sorted
(
vars
(
args
).
iteritems
()):
print
(
'%s: %s'
%
(
arg
,
value
))
print
(
'------------------------------------------------'
)
def
cnn_model
(
data
):
conv_pool_1
=
fluid
.
nets
.
simple_img_conv_pool
(
input
=
data
,
filter_size
=
5
,
num_filters
=
20
,
pool_size
=
2
,
pool_stride
=
2
,
act
=
"relu"
)
conv_pool_2
=
fluid
.
nets
.
simple_img_conv_pool
(
input
=
conv_pool_1
,
filter_size
=
5
,
num_filters
=
50
,
pool_size
=
2
,
pool_stride
=
2
,
act
=
"relu"
)
# TODO(dzhwinter) : refine the initializer and random seed settting
SIZE
=
10
input_shape
=
conv_pool_2
.
shape
param_shape
=
[
reduce
(
lambda
a
,
b
:
a
*
b
,
input_shape
[
1
:],
1
)]
+
[
SIZE
]
scale
=
(
2.0
/
(
param_shape
[
0
]
**
2
*
SIZE
))
**
0.5
predict
=
fluid
.
layers
.
fc
(
input
=
conv_pool_2
,
size
=
SIZE
,
act
=
"softmax"
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NormalInitializer
(
loc
=
0.0
,
scale
=
scale
)))
return
predict
def
eval_test
(
exe
,
batch_acc
,
batch_size_tensor
,
inference_program
):
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
args
.
batch_size
)
test_pass_acc
=
fluid
.
average
.
WeightedAverage
()
for
batch_id
,
data
in
enumerate
(
test_reader
()):
img_data
=
np
.
array
(
map
(
lambda
x
:
x
[
0
].
reshape
([
1
,
28
,
28
]),
data
)).
astype
(
DTYPE
)
y_data
=
np
.
array
(
map
(
lambda
x
:
x
[
1
],
data
)).
astype
(
"int64"
)
y_data
=
y_data
.
reshape
([
len
(
y_data
),
1
])
acc
,
weight
=
exe
.
run
(
inference_program
,
feed
=
{
"pixel"
:
img_data
,
"label"
:
y_data
},
fetch_list
=
[
batch_acc
,
batch_size_tensor
])
test_pass_acc
.
add
(
value
=
acc
,
weight
=
weight
)
pass_acc
=
test_pass_acc
.
eval
()
return
pass_acc
def
run_benchmark
(
model
,
args
):
if
args
.
use_cprof
:
pr
=
cProfile
.
Profile
()
pr
.
enable
()
start_time
=
time
.
time
()
# Input data
images
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
[
1
,
28
,
28
],
dtype
=
DTYPE
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
# Train program
predict
=
model
(
images
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
# Evaluator
batch_size_tensor
=
fluid
.
layers
.
create_tensor
(
dtype
=
'int64'
)
batch_acc
=
fluid
.
layers
.
accuracy
(
input
=
predict
,
label
=
label
,
total
=
batch_size_tensor
)
# inference program
inference_program
=
fluid
.
default_main_program
().
clone
()
with
fluid
.
program_guard
(
inference_program
):
inference_program
=
fluid
.
io
.
get_inference_program
(
target_vars
=
[
batch_acc
,
batch_size_tensor
])
# Optimization
opt
=
fluid
.
optimizer
.
AdamOptimizer
(
learning_rate
=
0.001
,
beta1
=
0.9
,
beta2
=
0.999
)
opt
.
minimize
(
avg_cost
)
fluid
.
memory_optimize
(
fluid
.
default_main_program
())
# Initialize executor
place
=
fluid
.
CPUPlace
()
if
args
.
device
==
'CPU'
else
fluid
.
CUDAPlace
(
0
)
exe
=
fluid
.
Executor
(
place
)
# Parameter initialization
exe
.
run
(
fluid
.
default_startup_program
())
# Reader
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
args
.
batch_size
)
accuracy
=
fluid
.
average
.
WeightedAverage
()
for
pass_id
in
range
(
args
.
pass_num
):
accuracy
.
reset
()
pass_start
=
time
.
time
()
every_pass_loss
=
[]
for
batch_id
,
data
in
enumerate
(
train_reader
()):
img_data
=
np
.
array
(
map
(
lambda
x
:
x
[
0
].
reshape
([
1
,
28
,
28
]),
data
)).
astype
(
DTYPE
)
y_data
=
np
.
array
(
map
(
lambda
x
:
x
[
1
],
data
)).
astype
(
"int64"
)
y_data
=
y_data
.
reshape
([
len
(
y_data
),
1
])
start
=
time
.
time
()
loss
,
acc
,
weight
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"pixel"
:
img_data
,
"label"
:
y_data
},
fetch_list
=
[
avg_cost
,
batch_acc
,
batch_size_tensor
]
)
# The accuracy is the accumulation of batches, but not the current batch.
end
=
time
.
time
()
accuracy
.
add
(
value
=
acc
,
weight
=
weight
)
every_pass_loss
.
append
(
loss
)
print
(
"Pass = %d, Iter = %d, Loss = %f, Accuracy = %f"
%
(
pass_id
,
batch_id
,
loss
,
acc
))
pass_end
=
time
.
time
()
train_avg_acc
=
accuracy
.
eval
()
train_avg_loss
=
np
.
mean
(
every_pass_loss
)
test_avg_acc
=
eval_test
(
exe
,
batch_acc
,
batch_size_tensor
,
inference_program
)
print
(
"pass=%d, train_avg_acc=%f,train_avg_loss=%f, test_avg_acc=%f, elapse=%f"
%
(
pass_id
,
train_avg_acc
,
train_avg_loss
,
test_avg_acc
,
(
pass_end
-
pass_start
)))
print
(
train_avg_acc
)
with
open
(
"train_acc_factor.txt"
,
'a+'
)
as
f
:
f
.
write
(
"%s
\n
"
%
train_avg_acc
)
with
open
(
"train_cost_factor.txt"
,
'a+'
)
as
f
:
print
([
train_avg_loss
])
f
.
write
(
'%s
\n
'
%
[
train_avg_loss
])
with
open
(
"test_acc_factor.txt"
,
'a+'
)
as
f
:
f
.
write
(
"%s
\n
"
%
test_avg_acc
)
with
open
(
"train_duration_factor.txt"
,
'a+'
)
as
f
:
print
([
pass_end
-
pass_start
])
f
.
write
(
'%s
\n
'
%
[
pass_end
-
pass_start
])
if
__name__
==
'__main__'
:
args
=
parse_args
()
print_arguments
(
args
)
if
args
.
use_nvprof
and
args
.
device
==
'GPU'
:
with
profiler
.
cuda_profiler
(
"cuda_profiler.txt"
,
'csv'
)
as
nvprof
:
run_benchmark
(
cnn_model
,
args
)
else
:
run_benchmark
(
cnn_model
,
args
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录