MODEL_ZOO.md 10.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Model Zoo and Benchmark
## Environment

- Python 2.7.1
- PaddlePaddle 1.5
- CUDA 9.0
- CUDNN 7.4
- NCCL 2.1.2

## Common settings

- All models below except SSD were trained on `coco_2017_train`, and tested on `coco_2017_val`.
- Batch Normalization layers in backbones are replaced by Affine Channel layers.
- Unless otherwise noted, all ResNet backbones adopt the [ResNet-B](https://arxiv.org/pdf/1812.01187) variant..
- For RCNN and RetinaNet models, only horizontal flipping data augmentation was used in the training phase and no augmentations were used in the testing phase.

## Training Schedules

J
jerrywgz 已提交
19
- We adopt exactly the same training schedules as [Detectron](https://github.com/facebookresearch/Detectron/blob/master/MODEL_ZOO.md#training-schedules).
20 21 22 23 24 25 26
- 1x indicates the schedule starts at a LR of 0.02 and is decreased by a factor of 10 after 60k and 80k iterations and eventually terminates at 90k iterations for minibatch size 16. For batch size 8, LR is decreased to 0.01, total training iterations are doubled, and the decay milestones are scaled by 2.
- 2x schedule is twice as long as 1x, with the LR milestones scaled accordingly.

## ImageNet Pretrained Models

The backbone models pretrained on ImageNet are available. All backbone models are pretrained on standard ImageNet-1k dataset and can be downloaded [here](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification#supported-models-and-performances).

J
jerrywgz 已提交
27
- Notes:  The ResNet50 model was trained with cosine LR decay schedule and can be downloaded [here](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar).
28 29 30 31 32

## Baselines

### Faster & Mask R-CNN

J
jerrywgz 已提交
33
| Backbone             | Type           | Image/gpu | Lr schd | Box AP | Mask AP |                           Download                           |
34
| :------------------- | :------------- | :-----: | :-----: | :----: | :-----: | :----------------------------------------------------------: |
J
jerrywgz 已提交
35 36 37
| ResNet50             | Faster         |    1    |   1x    |  35.2  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_1x.tar) |
| ResNet50             | Faster         |    1    |   2x    |  37.1  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_2x.tar) |
| ResNet50             | Mask           |    1    |   1x    |  36.5  |  32.2   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_1x.tar) |
G
Guanghua Yu 已提交
38
| ResNet50             | Mask           |    1    |   2x    |  38.2  |  33.4   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_2x.tar) |
J
jerrywgz 已提交
39
| ResNet50-vd          | Faster         |    1    |   1x    |  36.4  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_1x.tar) |
40
| ResNet50-FPN         | Faster         |    2    |   1x    |  37.2  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_fpn_1x.tar) |
J
jerrywgz 已提交
41
| ResNet50-FPN         | Faster         |    2    |   2x    |  37.7  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_fpn_2x.tar) |
42 43
| ResNet50-FPN         | Mask           |    1    |   1x    |  37.9  |  34.2   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_fpn_1x.tar) |
| ResNet50-FPN         | Mask           |    1    |   2x    |  38.7  |  34.7   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_fpn_2x.tar) |
J
jerrywgz 已提交
44
| ResNet50-FPN         | Cascade Faster |    2    |   1x    |  40.9  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_r50_fpn_1x.tar) |
J
jerrywgz 已提交
45
| ResNet50-vd-FPN      | Faster         |    2    |   2x    |  38.9  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_fpn_2x.tar) |
46
| ResNet50-vd-FPN      | Mask           |    1    |   2x    |  39.8  |  35.4   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_vd_fpn_2x.tar) |
J
jerrywgz 已提交
47 48 49 50
| ResNet101            | Faster         |    1    |   1x    |  38.3  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_1x.tar) |
| ResNet101-FPN        | Faster         |    1    |   1x    |  38.7  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_fpn_1x.tar) |
| ResNet101-FPN        | Faster         |    1    |   2x    |  39.1  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_fpn_2x.tar) |
| ResNet101-FPN        | Mask           |    1    |   1x    |  39.5  |  35.2   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r101_fpn_1x.tar) |
G
Guanghua Yu 已提交
51
| ResNet101-vd-FPN     | Faster         |    1    |   1x    |  40.5  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_vd_fpn_1x.tar) |
52
| ResNet101-vd-FPN     | Faster         |    1    |   2x    |  40.8  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_vd_fpn_2x.tar) |
W
wangguanzhong 已提交
53
| ResNet101-vd-FPN     | Mask           |    1    |   1x    |  41.4  |  36.8   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r101_vd_fpn_1x.tar) |
G
Guanghua Yu 已提交
54
| ResNeXt101-vd-FPN    | Faster         |    1    |   1x    |  42.2  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_x101_vd_64x4d_fpn_1x.tar) |
55
| ResNeXt101-vd-FPN    | Faster         |    1    |   2x    |  41.7  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_x101_vd_64x4d_fpn_2x.tar) |
W
wangguanzhong 已提交
56 57
| ResNeXt101-vd-FPN    | Mask           |    1    |   1x    |  42.9  |  37.9   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_x101_vd_64x4d_fpn_1x.tar) |
| ResNeXt101-vd-FPN    | Mask           |    1    |   2x    |  42.6  |  37.6   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_x101_vd_64x4d_fpn_2x.tar) |
J
jerrywgz 已提交
58 59
| SENet154-vd-FPN      | Faster         |    1    |  1.44x  |  42.9  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_se154_vd_fpn_s1x.tar) |
| SENet154-vd-FPN      | Mask           |    1    |  1.44x  |  44.0  |  38.7   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_se154_vd_fpn_s1x.tar) |
60 61 62

### Yolo v3

J
jerrywgz 已提交
63
| Backbone     | Size | Image/gpu | Lr schd | Box AP | Download  |
K
Kaipeng Deng 已提交
64
| :----------- | :--: | :-----: | :-----: | :----: | :-------: |
J
jerrywgz 已提交
65 66 67 68 69 70 71 72 73 74
| DarkNet53    | 608  |    8    |   270e  |  38.9  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar) |
| DarkNet53    | 416  |    8    |   270e  |  37.5  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar) |
| DarkNet53    | 320  |    8    |   270e  |  34.8  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar) |
| MobileNet-V1 | 608  |    8    |   270e  |  29.3  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
| MobileNet-V1 | 416  |    8    |   270e  |  29.3  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
| MobileNet-V1 | 320  |    8    |   270e  |  27.1  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
| ResNet34     | 608  |    8    |   270e  |  36.2  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) |
| ResNet34     | 416  |    8    |   270e  |  34.3  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) |
| ResNet34     | 320  |    8    |   270e  |  31.4  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) |

75 76 77 78 79 80 81 82 83 84 85 86 87 88
### Yolo v3 on Pascal VOC

| Backbone     | Size | Image/gpu | Lr schd | Box AP | Download  |
| :----------- | :--: | :-----: | :-----: | :----: | :-------: |
| DarkNet53    | 608  |    8    |   270e  |  83.5  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet_voc.tar) |
| DarkNet53    | 416  |    8    |   270e  |  83.6  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet_voc.tar) |
| DarkNet53    | 320  |    8    |   270e  |  82.2  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet_voc.tar) |
| MobileNet-V1 | 608  |    8    |   270e  |  76.2  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) |
| MobileNet-V1 | 416  |    8    |   270e  |  76.7  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) |
| MobileNet-V1 | 320  |    8    |   270e  |  75.3  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) |
| ResNet34     | 608  |    8    |   270e  |  82.6  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34_voc.tar) |
| ResNet34     | 416  |    8    |   270e  |  81.9  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34_voc.tar) |
| ResNet34     | 320  |    8    |   270e  |  80.1  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34_voc.tar) |

89 90 91 92
**NOTE**: Yolo v3 is trained in 8 GPU with total batch size as 64 and trained 270 epoches. Yolo v3 training data augmentations: mixup,
randomly color distortion, randomly cropping, randomly expansion, randomly interpolation method, randomly flippling. Yolo v3 used randomly
reshaped minibatch in training, inferences can be performed on different image sizes with the same model weights, and we provided evaluation
results of image size 608/416/320 above.
93 94 95

### RetinaNet

J
jerrywgz 已提交
96 97 98 99 100 101
| Backbone      | Image/gpu | Lr schd | Box AP | Download  |
| :-----------  | :-----: | :-----: | :----: | :-------: |
| ResNet50-FPN  |    2    |   1x    |  36.0  | [model](https://paddlemodels.bj.bcebos.com/object_detection/retinanet_r50_fpn_1x.tar)  |
| ResNet101-FPN |    2    |   1x    |  37.3  | [model](https://paddlemodels.bj.bcebos.com/object_detection/retinanet_r101_fpn_1x.tar) |

**Notes:** In RetinaNet, the base LR is changed to 0.01 for minibatch size 16.
102

Q
qingqing01 已提交
103
### SSD on Pascal VOC
104

J
jerrywgz 已提交
105
| Backbone     | Size | Image/gpu | Lr schd | Box AP | Download  |
K
Kaipeng Deng 已提交
106
| :----------- | :--: | :-----: | :-----: | :----: | :-------: |
107
| MobileNet v1 | 300  |    32   |   120e  |  73.13  | [model](https://paddlemodels.bj.bcebos.com/object_detection/ssd_mobilenet_v1_voc.tar) |
K
Kaipeng Deng 已提交
108

109
**NOTE**: SSD is trained in 2 GPU with totoal batch size as 64 and trained 120 epoches. SSD training data augmentations: randomly color distortion,
J
jerrywgz 已提交
110
randomly cropping, randomly expansion, randomly flipping.