提交 bf535713 编写于 作者: J jerrywgz 提交者: qingqing01

Refine model zoo doc (#2618)

上级 cfbaa865
architecture: MaskRCNN
train_feed: MaskRCNNTrainFeed
eval_feed: MaskRCNNEvalFeed
test_feed: MaskRCNNTestFeed
use_gpu: true
max_iters: 360000
snapshot_iter: 10000
log_smooth_window: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar
metric: COCO
weights: output/mask_rcnn_r101_fpn_2x/model_final/
MaskRCNN:
backbone: ResNet
fpn: FPN
rpn_head: FPNRPNHead
roi_extractor: FPNRoIAlign
bbox_head: BBoxHead
bbox_assigner: BBoxAssigner
ResNet:
depth: 101
feature_maps: [2, 3, 4, 5]
freeze_at: 2
norm_type: affine_channel
FPN:
max_level: 6
min_level: 2
num_chan: 256
spatial_scale: [0.03125, 0.0625, 0.125, 0.25]
FPNRPNHead:
anchor_generator:
aspect_ratios: [0.5, 1.0, 2.0]
variance: [1.0, 1.0, 1.0, 1.0]
anchor_start_size: 32
max_level: 6
min_level: 2
num_chan: 256
rpn_target_assign:
rpn_batch_size_per_im: 256
rpn_fg_fraction: 0.5
rpn_negative_overlap: 0.3
rpn_positive_overlap: 0.7
rpn_straddle_thresh: 0.0
train_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 2000
post_nms_top_n: 2000
test_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 1000
post_nms_top_n: 1000
FPNRoIAlign:
canconical_level: 4
canonical_size: 224
max_level: 5
min_level: 2
sampling_ratio: 2
box_resolution: 7
mask_resolution: 14
MaskHead:
dilation: 1
num_chan_reduced: 256
num_classes: 81
num_convs: 4
resolution: 28
BBoxAssigner:
batch_size_per_im: 512
bbox_reg_weights: [0.1, 0.1, 0.2, 0.2]
bg_thresh_hi: 0.5
bg_thresh_lo: 0.0
fg_fraction: 0.25
fg_thresh: 0.5
num_classes: 81
MaskAssigner:
resolution: 28
BBoxHead:
head: TwoFCHead
nms:
keep_top_k: 100
nms_threshold: 0.5
score_threshold: 0.05
num_classes: 81
TwoFCHead:
num_chan: 1024
LearningRate:
base_lr: 0.01
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [240000, 320000]
- !LinearWarmup
start_factor: 0.3333333333333333
steps: 500
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2
MaskRCNNTrainFeed:
batch_size: 1
dataset:
dataset_dir: dataset/coco
annotation: annotations/instances_train2017.json
image_dir: train2017
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 2
MaskRCNNEvalFeed:
batch_size: 1
dataset:
dataset_dir: dataset/coco
annotation: annotations/instances_val2017.json
image_dir: val2017
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 2
MaskRCNNTestFeed:
batch_size: 1
dataset:
annotation: annotations/instances_val2017.json
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 2
architecture: MaskRCNN
train_feed: MaskRCNNTrainFeed
eval_feed: MaskRCNNEvalFeed
test_feed: MaskRCNNTestFeed
use_gpu: true
max_iters: 360000
snapshot_iter: 10000
log_smooth_window: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
metric: COCO
weights: output/mask_rcnn_r50_fpn_2x/model_final/
MaskRCNN:
backbone: ResNet
fpn: FPN
rpn_head: FPNRPNHead
roi_extractor: FPNRoIAlign
bbox_head: BBoxHead
bbox_assigner: BBoxAssigner
ResNet:
depth: 50
feature_maps: [2, 3, 4, 5]
freeze_at: 2
norm_type: affine_channel
FPN:
max_level: 6
min_level: 2
num_chan: 256
spatial_scale: [0.03125, 0.0625, 0.125, 0.25]
FPNRPNHead:
anchor_generator:
aspect_ratios: [0.5, 1.0, 2.0]
variance: [1.0, 1.0, 1.0, 1.0]
anchor_start_size: 32
max_level: 6
min_level: 2
num_chan: 256
rpn_target_assign:
rpn_batch_size_per_im: 256
rpn_fg_fraction: 0.5
rpn_negative_overlap: 0.3
rpn_positive_overlap: 0.7
rpn_straddle_thresh: 0.0
train_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 2000
post_nms_top_n: 2000
test_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 1000
post_nms_top_n: 1000
FPNRoIAlign:
canconical_level: 4
canonical_size: 224
max_level: 5
min_level: 2
sampling_ratio: 2
box_resolution: 7
mask_resolution: 14
MaskHead:
dilation: 1
num_chan_reduced: 256
num_classes: 81
num_convs: 4
resolution: 28
BBoxAssigner:
batch_size_per_im: 512
bbox_reg_weights: [0.1, 0.1, 0.2, 0.2]
bg_thresh_hi: 0.5
bg_thresh_lo: 0.0
fg_fraction: 0.25
fg_thresh: 0.5
num_classes: 81
MaskAssigner:
resolution: 28
BBoxHead:
head: TwoFCHead
nms:
keep_top_k: 100
nms_threshold: 0.5
score_threshold: 0.05
num_classes: 81
TwoFCHead:
num_chan: 1024
LearningRate:
base_lr: 0.01
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [240000, 320000]
- !LinearWarmup
start_factor: 0.3333333333333333
steps: 500
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2
MaskRCNNTrainFeed:
batch_size: 1
dataset:
dataset_dir: dataset/coco
annotation: annotations/instances_train2017.json
image_dir: train2017
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 2
MaskRCNNEvalFeed:
batch_size: 1
dataset:
dataset_dir: dataset/coco
annotation: annotations/instances_val2017.json
image_dir: val2017
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 2
MaskRCNNTestFeed:
batch_size: 1
dataset:
annotation: annotations/instances_val2017.json
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 2
......@@ -16,7 +16,7 @@
## Training Schedules
- We adopt exactly the same training schedules as [Detectron](https://github.com/facebookresearch/Detectron/blob/master/MODEL_ZOO.md#training-schedules).
- We adopt exactly the same training schedules as [Detectron](https://github.com/facebookresearch/Detectron/blob/master/MODEL_ZOO.md#training-schedules).
- 1x indicates the schedule starts at a LR of 0.02 and is decreased by a factor of 10 after 60k and 80k iterations and eventually terminates at 90k iterations for minibatch size 16. For batch size 8, LR is decreased to 0.01, total training iterations are doubled, and the decay milestones are scaled by 2.
- 2x schedule is twice as long as 1x, with the LR milestones scaled accordingly.
......@@ -32,38 +32,33 @@ The backbone models pretrained on ImageNet are available. All backbone models ar
| Backbone | Type | Img/gpu | Lr schd | Box AP | Mask AP | Download |
| :------------------- | :------------- | :-----: | :-----: | :----: | :-----: | :----------------------------------------------------------: |
| ResNet50 | Faster | 1 | 1x | 35.1 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_1x.tar) |
| ResNet50 | Faster | 1 | 2x | 37.0 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_2x.tar) |
| ResNet50 | Mask | 1 | 1x | 36.5 | 32.2 | [model](https://paddlemodels.bj.bcebos.com/object_detection/Fmask_rcnn_r50_1x.tar) |
| ResNet50 | Faster | 1 | 1x | 35.2 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_1x.tar) |
| ResNet50 | Faster | 1 | 2x | 37.1 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_2x.tar) |
| ResNet50 | Mask | 1 | 1x | 36.5 | 32.2 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_1x.tar) |
| ResNet50 | Mask | 1 | 2x | | | [model]() |
| ResNet50-D | Faster | 1 | 1x | 36.4 | - | [model](ttps://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_1x.tar) |
| ResNet50-FPN | Faster | 2 | 1x | 37.2 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_fpn_1x.tar) |
| ResNet50-FPN | Faster | 2 | 2x | 38.1 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_fpn_2x.tar) |
| ResNet50-FPN | Faster | 2 | 2x | 37.7 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_fpn_2x.tar) |
| ResNet50-FPN | Mask | 2 | 1x | 37.9 | 34.2 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_fpn_1x.tar) |
| ResNet50-FPN | Mask | 2 | 2x | | | [model]() |
| ResNet50-FPN | Cascade Faster | 2 | 1x | 40.4 | - | [model]() |
| ResNet50-D-FPN | Faster | 2 | 2x | | - | [model]() |
| ResNet50-FPN | Cascade Faster | 2 | 1x | 40.9 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_r50_fpn_1x.tar) |
| ResNet50-D-FPN | Faster | 2 | 2x | 38.9 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_fpn_2x.tar) |
| ResNet50-D-FPN | Mask | 2 | 2x | 39.8 | 35.4 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_vd_fpn_2x.tar) |
| ResNet101 | Faster | 1 | 1x | | - | [model]() |
| ResNet101-FPN | Faster | 1 | 1x | | - | [model]() |
| ResNet101-FPN | Faster | 1 | 2x | | - | [model]() |
| ResNet101-FPN | Mask | 1 | 1x | | | [model]() |
| ResNet101-FPN | Mask | 1 | 2x | | | [model]() |
| ResNet101-D-FPN | Faster | 1 | 1x | | - | [model]() |
| ResNet101-D-FPN | Faster | 1 | 2x | | - | [model]() |
| ResNet101-D-FPN | Mask | 1 | 2x | | | [model]() |
| ResNeXt101-64x4d-FPN | Faster | 1 | 1x | | - | [model]() |
| ResNeXt101-64x4d-FPN | Faster | 1 | 2x | | - | [model]() |
| ResNeXt101-64x4d-FPN | Mask | 1 | 1x | | | [model]() |
| ResNeXt101-64x4d-FPN | Mask | 1 | 2x | | | [model]() |
| SENet154-D-FPN | Faster | 1 | 1.44x | | - | [model]() |
| ResNet101 | Faster | 1 | 1x | 38.3 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_1x.tar) |
| ResNet101-FPN | Faster | 1 | 1x | 38.7 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_fpn_1x.tar) |
| ResNet101-FPN | Faster | 1 | 2x | 39.1 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_fpn_2x.tar) |
| ResNet101-FPN | Mask | 1 | 1x | 39.5 | 35.2 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r101_fpn_1x.tar) |
| ResNet101-D-FPN | Faster | 1 | 1x | 40.0 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_fpn_1x.tar) |
| ResNet101-D-FPN | Faster | 1 | 2x | 40.6 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_fpn_2x.tar) |
| SENet154-D-FPN | Faster | 1 | 1.44x | 43.5 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_se154_fpn_s1x.tar) |
| SENet154-D-FPN | Mask | 1 | 1.44x | 44.0 | 38.7 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_se154_vd_fpn_s1x.tar) |
### Yolo v3
| Backbone | Size | Lr schd | Box AP | Download |
| :-------- | :--: | :-----: | :----: | :-------: |
| DarkNet53 | 608 | 120e | 25.7 | [model]() |
| DarkNet53 | 608 | 120e | 25.7 | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar) |
| MobileNet-V1 | 608 | 120e | 25.7 | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
| ResNet34 | 608 | 120e | 25.7 | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
- Notes: Data Augmentation(TODO:Kaipeng)
......@@ -71,13 +66,13 @@ The backbone models pretrained on ImageNet are available. All backbone models ar
| Backbone | Size | Lr schd | Box AP | Download |
| :----------- | :--: | :-----: | :----: | :-------: |
| ResNet50-FPN | 300 | 120e | 25.7 | [model]() |
| ResNet50-FPN | 300 | 120e | 36.0 | [model](https://paddlemodels.bj.bcebos.com/object_detection/retinanet_r50_fpn_1x.tar) |
| ResNet101-FPN | 300 | 120e | 37.3 | [model](https://paddlemodels.bj.bcebos.com/object_detection/retinanet_r101_fpn_1x.tar) |
- Notes: (TODO:Kaipeng)
### SSD
### SSD on PascalVOC
| Backbone | Size | Lr schd | Box AP | Download |
| :----------- | :--: | :-----: | :----: | :-------: |
| MobileNet v1 | 300 | 120e | 25.7 | [model]() |
| MobileNet v1 | 300 | 120e | 25.7 | [model](https://paddlemodels.bj.bcebos.com/object_detection/ssd_mobilenet_v1_voc.tar) |
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册