score.py 5.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
import os
# os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# os.environ["FLAGS_fraction_of_gpu_memory_to_use"] = "0.3"
import sys
sys.path.insert(0, ".")
import argparse
import functools

import paddle.fluid as fluid
import reader
from utils import *
import json
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
import tempfile

parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('batch_size',       int,   32,        "Minibatch size.")
add_arg('data_dir',         str,   '',        "The data root path.")
add_arg('test_list',        str,   '',        "The testing data lists.")
add_arg('model_dir',        str,   '',     "The model path.")
add_arg('nms_threshold',    float, 0.45,    "NMS threshold.")
add_arg('ap_version',       str,   'cocoMAP',   "cocoMAP.")
add_arg('mean_value_B',     float, 127.5,  "Mean value for B channel which will be subtracted.")  #123.68
add_arg('mean_value_G',     float, 127.5,  "Mean value for G channel which will be subtracted.")  #116.78
add_arg('mean_value_R',     float, 127.5,  "Mean value for R channel which will be subtracted.")  #103.94

def use_coco_api_compute_mAP(data_args, test_list, num_classes, test_reader, exe, infer_program,
                             feeded_var_names, feeder, target_var, batch_size):
    cocoGt = COCO(os.path.join(data_args.data_dir, test_list))
    json_category_id_to_contiguous_id = {
        v: i + 1
        for i, v in enumerate(cocoGt.getCatIds())
    }
    contiguous_category_id_to_json_id = {
        v: k
        for k, v in json_category_id_to_contiguous_id.items()
    }

    dts_res = []

    executor = fluid.Executor(fluid.CUDAPlace(0))
    test_program = fluid.Program()
    with fluid.program_guard(test_program):
        boxes = fluid.layers.data(
            name='boxes', shape=[-1, -1, 4], dtype='float32')
        scores = fluid.layers.data(
            name='scores', shape=[-1, -1, num_classes], dtype='float32')
        pred_result = fluid.layers.multiclass_nms(
            bboxes=boxes,
            scores=scores,
            score_threshold=0.01,
            nms_top_k=-1,
            nms_threshold=0.45,
            keep_top_k=-1,
            normalized=False)

    executor.run(fluid.default_startup_program())

    for batch_id, data in enumerate(test_reader()):
        boxes_np, socres_np = exe.run(program=infer_program,
                                      feed={feeded_var_names[0]: feeder.feed(data)['image']},
                                      fetch_list=target_var)

        nms_out = executor.run(
            program=test_program,
            feed={
                'boxes': boxes_np,
                'scores': socres_np
            },
            fetch_list=[pred_result], return_numpy=False)
        if batch_id % 20 == 0:
            print("Batch {0}".format(batch_id))
        dts_res += get_batch_dt_res(nms_out, data, contiguous_category_id_to_json_id, batch_size)

    _, tmp_file = tempfile.mkstemp()
    with open(tmp_file, 'w') as outfile:
        json.dump(dts_res, outfile)
    print("start evaluate using coco api")
    cocoDt = cocoGt.loadRes(tmp_file)
    cocoEval = COCOeval(cocoGt, cocoDt, "bbox")
    cocoEval.evaluate()
    cocoEval.accumulate()
    cocoEval.summarize()

    mAP = cocoEval.stats[0]
    return mAP

def compute_score(model_dir, data_dir, test_list='annotations/instances_val2017.json', batch_size=32, height=300, width=300, num_classes=81,
                          mean_value=[127.5, 127.5, 127.5]):
    """
        compute score, mAP, flops of a model

        Args:
            model_dir (string): directory of model
            data_dir (string): directory of coco dataset, like '/your/path/to/coco', '/work/datasets/coco'

        Returns:
            tuple: score, mAP, flops.

        """

    place = fluid.CUDAPlace(0)
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    [infer_program, feeded_var_names, target_var] = fluid.io.load_inference_model(dirname=model_dir, executor=exe)

    image_shape = [3, height, width]

    data_args = reader.Settings(
            dataset='coco2017',
            data_dir=data_dir,
            resize_h=height,
            resize_w=width,
            mean_value=mean_value,
            apply_distort=False,
            apply_expand=False,
            ap_version='cocoMAP')

    image = fluid.layers.data(name='image', shape=image_shape, dtype='float32')
    gt_box = fluid.layers.data(
        name='gt_box', shape=[4], dtype='float32', lod_level=1)
    gt_label = fluid.layers.data(
        name='gt_label', shape=[1], dtype='int32', lod_level=1)
    gt_iscrowd = fluid.layers.data(
        name='gt_iscrowd', shape=[1], dtype='int32', lod_level=1)
    gt_image_info = fluid.layers.data(
        name='gt_image_id', shape=[3], dtype='int32')

    test_reader = reader.test(data_args, test_list, batch_size)
    feeder = fluid.DataFeeder(
        place=place,
        feed_list=[image, gt_box, gt_label, gt_iscrowd, gt_image_info])

    mAP = use_coco_api_compute_mAP(data_args, test_list, num_classes, test_reader, exe, infer_program,
                             feeded_var_names, feeder, target_var, batch_size)
    total_flops_params, is_quantize = summary(infer_program)
    MAdds = np.sum(total_flops_params['flops']) / 2000000.0

    if is_quantize:
        MAdds /= 2.0

    print('mAP:', mAP)
    print('MAdds:', MAdds)

    if MAdds < 160.0:
        MAdds = 160.0

    if MAdds > 1300.0:
        score = 0.0
    else:
        score = mAP * 100 - (5.1249 * np.log(MAdds) - 14.499)

    print('score:', score)

    return score, mAP, MAdds


if __name__ == '__main__':
    args = parser.parse_args()
    print_arguments(args)
    score, mAP, flops = compute_score(args.model_dir, args.data_dir, batch_size=args.batch_size)