Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
2df26c04
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
2df26c04
编写于
7月 15, 2019
作者:
L
LielinJiang
提交者:
whs
7月 15, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
score tool of astar2019 detection competition (#2800)
* baiduzhixing score tools * update name and add baseline model
上级
011591da
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
1060 addition
and
0 deletion
+1060
-0
PaddleCV/Research/astar2019/README.md
PaddleCV/Research/astar2019/README.md
+26
-0
PaddleCV/Research/astar2019/baseline_model.zip
PaddleCV/Research/astar2019/baseline_model.zip
+0
-0
PaddleCV/Research/astar2019/image_util.py
PaddleCV/Research/astar2019/image_util.py
+240
-0
PaddleCV/Research/astar2019/reader.py
PaddleCV/Research/astar2019/reader.py
+361
-0
PaddleCV/Research/astar2019/score.py
PaddleCV/Research/astar2019/score.py
+165
-0
PaddleCV/Research/astar2019/utils.py
PaddleCV/Research/astar2019/utils.py
+268
-0
未找到文件。
PaddleCV/Research/astar2019/README.md
0 → 100644
浏览文件 @
2df26c04
### 百度之星轻量化检测比赛评测工具
数据目录结构如下:
```
your/path/coco/
├── annotations
│ ├── instances_train2017.json
│ ├── instances_val2017.json
| ...
├── train2017
│ ├── 000000000009.jpg
│ ├── 000000580008.jpg
| ...
├── val2017
│ ├── 000000000139.jpg
│ ├── 000000000285.jpg
| ...
```
命令示例:
```
bash
# Evaluate
python score.py
--model_dir
your/path/saved_model/
--data_dir
your/path/coco/
```
PaddleCV/Research/astar2019/baseline_model.zip
0 → 100644
浏览文件 @
2df26c04
文件已添加
PaddleCV/Research/astar2019/image_util.py
0 → 100644
浏览文件 @
2df26c04
from
PIL
import
Image
,
ImageEnhance
,
ImageDraw
from
PIL
import
ImageFile
import
numpy
as
np
import
random
import
math
ImageFile
.
LOAD_TRUNCATED_IMAGES
=
True
#otherwise IOError raised image file is truncated
class
sampler
():
def
__init__
(
self
,
max_sample
,
max_trial
,
min_scale
,
max_scale
,
min_aspect_ratio
,
max_aspect_ratio
,
min_jaccard_overlap
,
max_jaccard_overlap
):
self
.
max_sample
=
max_sample
self
.
max_trial
=
max_trial
self
.
min_scale
=
min_scale
self
.
max_scale
=
max_scale
self
.
min_aspect_ratio
=
min_aspect_ratio
self
.
max_aspect_ratio
=
max_aspect_ratio
self
.
min_jaccard_overlap
=
min_jaccard_overlap
self
.
max_jaccard_overlap
=
max_jaccard_overlap
class
bbox
():
def
__init__
(
self
,
xmin
,
ymin
,
xmax
,
ymax
):
self
.
xmin
=
xmin
self
.
ymin
=
ymin
self
.
xmax
=
xmax
self
.
ymax
=
ymax
def
bbox_area
(
src_bbox
):
width
=
src_bbox
.
xmax
-
src_bbox
.
xmin
height
=
src_bbox
.
ymax
-
src_bbox
.
ymin
return
width
*
height
def
generate_sample
(
sampler
):
scale
=
np
.
random
.
uniform
(
sampler
.
min_scale
,
sampler
.
max_scale
)
aspect_ratio
=
np
.
random
.
uniform
(
sampler
.
min_aspect_ratio
,
sampler
.
max_aspect_ratio
)
aspect_ratio
=
max
(
aspect_ratio
,
(
scale
**
2.0
))
aspect_ratio
=
min
(
aspect_ratio
,
1
/
(
scale
**
2.0
))
bbox_width
=
scale
*
(
aspect_ratio
**
0.5
)
bbox_height
=
scale
/
(
aspect_ratio
**
0.5
)
xmin_bound
=
1
-
bbox_width
ymin_bound
=
1
-
bbox_height
xmin
=
np
.
random
.
uniform
(
0
,
xmin_bound
)
ymin
=
np
.
random
.
uniform
(
0
,
ymin_bound
)
xmax
=
xmin
+
bbox_width
ymax
=
ymin
+
bbox_height
sampled_bbox
=
bbox
(
xmin
,
ymin
,
xmax
,
ymax
)
return
sampled_bbox
def
jaccard_overlap
(
sample_bbox
,
object_bbox
):
if
sample_bbox
.
xmin
>=
object_bbox
.
xmax
or
\
sample_bbox
.
xmax
<=
object_bbox
.
xmin
or
\
sample_bbox
.
ymin
>=
object_bbox
.
ymax
or
\
sample_bbox
.
ymax
<=
object_bbox
.
ymin
:
return
0
intersect_xmin
=
max
(
sample_bbox
.
xmin
,
object_bbox
.
xmin
)
intersect_ymin
=
max
(
sample_bbox
.
ymin
,
object_bbox
.
ymin
)
intersect_xmax
=
min
(
sample_bbox
.
xmax
,
object_bbox
.
xmax
)
intersect_ymax
=
min
(
sample_bbox
.
ymax
,
object_bbox
.
ymax
)
intersect_size
=
(
intersect_xmax
-
intersect_xmin
)
*
(
intersect_ymax
-
intersect_ymin
)
sample_bbox_size
=
bbox_area
(
sample_bbox
)
object_bbox_size
=
bbox_area
(
object_bbox
)
overlap
=
intersect_size
/
(
sample_bbox_size
+
object_bbox_size
-
intersect_size
)
return
overlap
def
satisfy_sample_constraint
(
sampler
,
sample_bbox
,
bbox_labels
):
if
sampler
.
min_jaccard_overlap
==
0
and
sampler
.
max_jaccard_overlap
==
0
:
return
True
for
i
in
range
(
len
(
bbox_labels
)):
object_bbox
=
bbox
(
bbox_labels
[
i
][
1
],
bbox_labels
[
i
][
2
],
bbox_labels
[
i
][
3
],
bbox_labels
[
i
][
4
])
overlap
=
jaccard_overlap
(
sample_bbox
,
object_bbox
)
if
sampler
.
min_jaccard_overlap
!=
0
and
\
overlap
<
sampler
.
min_jaccard_overlap
:
continue
if
sampler
.
max_jaccard_overlap
!=
0
and
\
overlap
>
sampler
.
max_jaccard_overlap
:
continue
return
True
return
False
def
generate_batch_samples
(
batch_sampler
,
bbox_labels
):
sampled_bbox
=
[]
index
=
[]
c
=
0
for
sampler
in
batch_sampler
:
found
=
0
for
i
in
range
(
sampler
.
max_trial
):
if
found
>=
sampler
.
max_sample
:
break
sample_bbox
=
generate_sample
(
sampler
)
if
satisfy_sample_constraint
(
sampler
,
sample_bbox
,
bbox_labels
):
sampled_bbox
.
append
(
sample_bbox
)
found
=
found
+
1
index
.
append
(
c
)
c
=
c
+
1
return
sampled_bbox
def
clip_bbox
(
src_bbox
):
src_bbox
.
xmin
=
max
(
min
(
src_bbox
.
xmin
,
1.0
),
0.0
)
src_bbox
.
ymin
=
max
(
min
(
src_bbox
.
ymin
,
1.0
),
0.0
)
src_bbox
.
xmax
=
max
(
min
(
src_bbox
.
xmax
,
1.0
),
0.0
)
src_bbox
.
ymax
=
max
(
min
(
src_bbox
.
ymax
,
1.0
),
0.0
)
return
src_bbox
def
meet_emit_constraint
(
src_bbox
,
sample_bbox
):
center_x
=
(
src_bbox
.
xmax
+
src_bbox
.
xmin
)
/
2
center_y
=
(
src_bbox
.
ymax
+
src_bbox
.
ymin
)
/
2
if
center_x
>=
sample_bbox
.
xmin
and
\
center_x
<=
sample_bbox
.
xmax
and
\
center_y
>=
sample_bbox
.
ymin
and
\
center_y
<=
sample_bbox
.
ymax
:
return
True
return
False
def
transform_labels
(
bbox_labels
,
sample_bbox
):
proj_bbox
=
bbox
(
0
,
0
,
0
,
0
)
sample_labels
=
[]
for
i
in
range
(
len
(
bbox_labels
)):
sample_label
=
[]
object_bbox
=
bbox
(
bbox_labels
[
i
][
1
],
bbox_labels
[
i
][
2
],
bbox_labels
[
i
][
3
],
bbox_labels
[
i
][
4
])
if
not
meet_emit_constraint
(
object_bbox
,
sample_bbox
):
continue
sample_width
=
sample_bbox
.
xmax
-
sample_bbox
.
xmin
sample_height
=
sample_bbox
.
ymax
-
sample_bbox
.
ymin
proj_bbox
.
xmin
=
(
object_bbox
.
xmin
-
sample_bbox
.
xmin
)
/
sample_width
proj_bbox
.
ymin
=
(
object_bbox
.
ymin
-
sample_bbox
.
ymin
)
/
sample_height
proj_bbox
.
xmax
=
(
object_bbox
.
xmax
-
sample_bbox
.
xmin
)
/
sample_width
proj_bbox
.
ymax
=
(
object_bbox
.
ymax
-
sample_bbox
.
ymin
)
/
sample_height
proj_bbox
=
clip_bbox
(
proj_bbox
)
if
bbox_area
(
proj_bbox
)
>
0
:
sample_label
.
append
(
bbox_labels
[
i
][
0
])
sample_label
.
append
(
float
(
proj_bbox
.
xmin
))
sample_label
.
append
(
float
(
proj_bbox
.
ymin
))
sample_label
.
append
(
float
(
proj_bbox
.
xmax
))
sample_label
.
append
(
float
(
proj_bbox
.
ymax
))
#sample_label.append(bbox_labels[i][5])
sample_label
=
sample_label
+
bbox_labels
[
i
][
5
:]
sample_labels
.
append
(
sample_label
)
return
sample_labels
def
crop_image
(
img
,
bbox_labels
,
sample_bbox
,
image_width
,
image_height
):
sample_bbox
=
clip_bbox
(
sample_bbox
)
xmin
=
int
(
sample_bbox
.
xmin
*
image_width
)
xmax
=
int
(
sample_bbox
.
xmax
*
image_width
)
ymin
=
int
(
sample_bbox
.
ymin
*
image_height
)
ymax
=
int
(
sample_bbox
.
ymax
*
image_height
)
sample_img
=
img
[
ymin
:
ymax
,
xmin
:
xmax
]
sample_labels
=
transform_labels
(
bbox_labels
,
sample_bbox
)
return
sample_img
,
sample_labels
def
random_brightness
(
img
,
settings
):
prob
=
np
.
random
.
uniform
(
0
,
1
)
if
prob
<
settings
.
_brightness_prob
:
delta
=
np
.
random
.
uniform
(
-
settings
.
_brightness_delta
,
settings
.
_brightness_delta
)
+
1
img
=
ImageEnhance
.
Brightness
(
img
).
enhance
(
delta
)
return
img
def
random_contrast
(
img
,
settings
):
prob
=
np
.
random
.
uniform
(
0
,
1
)
if
prob
<
settings
.
_contrast_prob
:
delta
=
np
.
random
.
uniform
(
-
settings
.
_contrast_delta
,
settings
.
_contrast_delta
)
+
1
img
=
ImageEnhance
.
Contrast
(
img
).
enhance
(
delta
)
return
img
def
random_saturation
(
img
,
settings
):
prob
=
np
.
random
.
uniform
(
0
,
1
)
if
prob
<
settings
.
_saturation_prob
:
delta
=
np
.
random
.
uniform
(
-
settings
.
_saturation_delta
,
settings
.
_saturation_delta
)
+
1
img
=
ImageEnhance
.
Color
(
img
).
enhance
(
delta
)
return
img
def
random_hue
(
img
,
settings
):
prob
=
np
.
random
.
uniform
(
0
,
1
)
if
prob
<
settings
.
_hue_prob
:
delta
=
np
.
random
.
uniform
(
-
settings
.
_hue_delta
,
settings
.
_hue_delta
)
img_hsv
=
np
.
array
(
img
.
convert
(
'HSV'
))
img_hsv
[:,
:,
0
]
=
img_hsv
[:,
:,
0
]
+
delta
img
=
Image
.
fromarray
(
img_hsv
,
mode
=
'HSV'
).
convert
(
'RGB'
)
return
img
def
distort_image
(
img
,
settings
):
prob
=
np
.
random
.
uniform
(
0
,
1
)
# Apply different distort order
if
prob
>
0.5
:
img
=
random_brightness
(
img
,
settings
)
img
=
random_contrast
(
img
,
settings
)
img
=
random_saturation
(
img
,
settings
)
img
=
random_hue
(
img
,
settings
)
else
:
img
=
random_brightness
(
img
,
settings
)
img
=
random_saturation
(
img
,
settings
)
img
=
random_hue
(
img
,
settings
)
img
=
random_contrast
(
img
,
settings
)
return
img
def
expand_image
(
img
,
bbox_labels
,
img_width
,
img_height
,
settings
):
prob
=
np
.
random
.
uniform
(
0
,
1
)
if
prob
<
settings
.
_expand_prob
:
if
settings
.
_expand_max_ratio
-
1
>=
0.01
:
expand_ratio
=
np
.
random
.
uniform
(
1
,
settings
.
_expand_max_ratio
)
height
=
int
(
img_height
*
expand_ratio
)
width
=
int
(
img_width
*
expand_ratio
)
h_off
=
math
.
floor
(
np
.
random
.
uniform
(
0
,
height
-
img_height
))
w_off
=
math
.
floor
(
np
.
random
.
uniform
(
0
,
width
-
img_width
))
expand_bbox
=
bbox
(
-
w_off
/
img_width
,
-
h_off
/
img_height
,
(
width
-
w_off
)
/
img_width
,
(
height
-
h_off
)
/
img_height
)
expand_img
=
np
.
ones
((
height
,
width
,
3
))
expand_img
=
np
.
uint8
(
expand_img
*
np
.
squeeze
(
settings
.
_img_mean
))
expand_img
=
Image
.
fromarray
(
expand_img
)
expand_img
.
paste
(
img
,
(
int
(
w_off
),
int
(
h_off
)))
bbox_labels
=
transform_labels
(
bbox_labels
,
expand_bbox
)
return
expand_img
,
bbox_labels
,
width
,
height
return
img
,
bbox_labels
,
img_width
,
img_height
PaddleCV/Research/astar2019/reader.py
0 → 100644
浏览文件 @
2df26c04
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
xml.etree.ElementTree
import
os
import
time
import
copy
import
six
import
math
import
numpy
as
np
from
PIL
import
Image
from
PIL
import
ImageDraw
import
image_util
import
paddle
class
Settings
(
object
):
def
__init__
(
self
,
dataset
=
None
,
data_dir
=
None
,
label_file
=
None
,
resize_h
=
300
,
resize_w
=
300
,
mean_value
=
[
127.5
,
127.5
,
127.5
],
apply_distort
=
True
,
apply_expand
=
True
,
ap_version
=
'11point'
):
self
.
_dataset
=
dataset
self
.
_ap_version
=
ap_version
self
.
_data_dir
=
data_dir
if
'pascalvoc'
in
dataset
:
self
.
_label_list
=
[]
label_fpath
=
os
.
path
.
join
(
data_dir
,
label_file
)
for
line
in
open
(
label_fpath
):
self
.
_label_list
.
append
(
line
.
strip
())
self
.
_apply_distort
=
apply_distort
self
.
_apply_expand
=
apply_expand
self
.
_resize_height
=
resize_h
self
.
_resize_width
=
resize_w
self
.
_img_mean
=
np
.
array
(
mean_value
)[:,
np
.
newaxis
,
np
.
newaxis
].
astype
(
'float32'
)
self
.
_expand_prob
=
0.5
self
.
_expand_max_ratio
=
4
self
.
_hue_prob
=
0.5
self
.
_hue_delta
=
18
self
.
_contrast_prob
=
0.5
self
.
_contrast_delta
=
0.5
self
.
_saturation_prob
=
0.5
self
.
_saturation_delta
=
0.5
self
.
_brightness_prob
=
0.5
self
.
_brightness_delta
=
0.125
@
property
def
dataset
(
self
):
return
self
.
_dataset
@
property
def
ap_version
(
self
):
return
self
.
_ap_version
@
property
def
apply_distort
(
self
):
return
self
.
_apply_expand
@
property
def
apply_distort
(
self
):
return
self
.
_apply_distort
@
property
def
data_dir
(
self
):
return
self
.
_data_dir
@
data_dir
.
setter
def
data_dir
(
self
,
data_dir
):
self
.
_data_dir
=
data_dir
@
property
def
label_list
(
self
):
return
self
.
_label_list
@
property
def
resize_h
(
self
):
return
self
.
_resize_height
@
property
def
resize_w
(
self
):
return
self
.
_resize_width
@
property
def
img_mean
(
self
):
return
self
.
_img_mean
def
preprocess
(
img
,
bbox_labels
,
mode
,
settings
):
img_width
,
img_height
=
img
.
size
sampled_labels
=
bbox_labels
if
mode
==
'train'
:
if
settings
.
_apply_distort
:
img
=
image_util
.
distort_image
(
img
,
settings
)
if
settings
.
_apply_expand
:
img
,
bbox_labels
,
img_width
,
img_height
=
image_util
.
expand_image
(
img
,
bbox_labels
,
img_width
,
img_height
,
settings
)
# sampling
batch_sampler
=
[]
# hard-code here
batch_sampler
.
append
(
image_util
.
sampler
(
1
,
1
,
1.0
,
1.0
,
1.0
,
1.0
,
0.0
,
0.0
))
batch_sampler
.
append
(
image_util
.
sampler
(
1
,
50
,
0.3
,
1.0
,
0.5
,
2.0
,
0.1
,
0.0
))
batch_sampler
.
append
(
image_util
.
sampler
(
1
,
50
,
0.3
,
1.0
,
0.5
,
2.0
,
0.3
,
0.0
))
batch_sampler
.
append
(
image_util
.
sampler
(
1
,
50
,
0.3
,
1.0
,
0.5
,
2.0
,
0.5
,
0.0
))
batch_sampler
.
append
(
image_util
.
sampler
(
1
,
50
,
0.3
,
1.0
,
0.5
,
2.0
,
0.7
,
0.0
))
batch_sampler
.
append
(
image_util
.
sampler
(
1
,
50
,
0.3
,
1.0
,
0.5
,
2.0
,
0.9
,
0.0
))
batch_sampler
.
append
(
image_util
.
sampler
(
1
,
50
,
0.3
,
1.0
,
0.5
,
2.0
,
0.0
,
1.0
))
sampled_bbox
=
image_util
.
generate_batch_samples
(
batch_sampler
,
bbox_labels
)
img
=
np
.
array
(
img
)
if
len
(
sampled_bbox
)
>
0
:
idx
=
int
(
np
.
random
.
uniform
(
0
,
len
(
sampled_bbox
)))
img
,
sampled_labels
=
image_util
.
crop_image
(
img
,
bbox_labels
,
sampled_bbox
[
idx
],
img_width
,
img_height
)
img
=
Image
.
fromarray
(
img
)
img
=
img
.
resize
((
settings
.
resize_w
,
settings
.
resize_h
),
Image
.
ANTIALIAS
)
img
=
np
.
array
(
img
)
if
mode
==
'train'
:
mirror
=
int
(
np
.
random
.
uniform
(
0
,
2
))
if
mirror
==
1
:
img
=
img
[:,
::
-
1
,
:]
for
i
in
six
.
moves
.
xrange
(
len
(
sampled_labels
)):
tmp
=
sampled_labels
[
i
][
1
]
sampled_labels
[
i
][
1
]
=
1
-
sampled_labels
[
i
][
3
]
sampled_labels
[
i
][
3
]
=
1
-
tmp
# HWC to CHW
if
len
(
img
.
shape
)
==
3
:
img
=
np
.
swapaxes
(
img
,
1
,
2
)
img
=
np
.
swapaxes
(
img
,
1
,
0
)
# RBG to BGR
img
=
img
[[
2
,
1
,
0
],
:,
:]
img
=
img
.
astype
(
'float32'
)
img
-=
settings
.
img_mean
img
=
img
*
0.007843
return
img
,
sampled_labels
def
coco
(
settings
,
coco_api
,
file_list
,
mode
,
batch_size
,
shuffle
,
data_dir
):
from
pycocotools.coco
import
COCO
def
reader
():
if
mode
==
'train'
and
shuffle
:
np
.
random
.
shuffle
(
file_list
)
batch_out
=
[]
for
image
in
file_list
:
image_name
=
image
[
'file_name'
]
image_path
=
os
.
path
.
join
(
data_dir
,
image_name
)
if
not
os
.
path
.
exists
(
image_path
):
raise
ValueError
(
"%s is not exist, you should specify "
"data path correctly."
%
image_path
)
im
=
Image
.
open
(
image_path
)
if
im
.
mode
==
'L'
:
im
=
im
.
convert
(
'RGB'
)
im_width
,
im_height
=
im
.
size
im_id
=
image
[
'id'
]
# layout: category_id | xmin | ymin | xmax | ymax | iscrowd
bbox_labels
=
[]
annIds
=
coco_api
.
getAnnIds
(
imgIds
=
image
[
'id'
])
anns
=
coco_api
.
loadAnns
(
annIds
)
for
ann
in
anns
:
bbox_sample
=
[]
# start from 1, leave 0 to background
bbox_sample
.
append
(
float
(
ann
[
'category_id'
]))
bbox
=
ann
[
'bbox'
]
xmin
,
ymin
,
w
,
h
=
bbox
xmax
=
xmin
+
w
ymax
=
ymin
+
h
bbox_sample
.
append
(
float
(
xmin
)
/
im_width
)
bbox_sample
.
append
(
float
(
ymin
)
/
im_height
)
bbox_sample
.
append
(
float
(
xmax
)
/
im_width
)
bbox_sample
.
append
(
float
(
ymax
)
/
im_height
)
bbox_sample
.
append
(
float
(
ann
[
'iscrowd'
]))
bbox_labels
.
append
(
bbox_sample
)
im
,
sample_labels
=
preprocess
(
im
,
bbox_labels
,
mode
,
settings
)
sample_labels
=
np
.
array
(
sample_labels
)
if
len
(
sample_labels
)
==
0
:
continue
im
=
im
.
astype
(
'float32'
)
boxes
=
sample_labels
[:,
1
:
5
]
lbls
=
sample_labels
[:,
0
].
astype
(
'int32'
)
iscrowd
=
sample_labels
[:,
-
1
].
astype
(
'int32'
)
if
'cocoMAP'
in
settings
.
ap_version
:
batch_out
.
append
((
im
,
boxes
,
lbls
,
iscrowd
,
[
im_id
,
im_width
,
im_height
]))
else
:
batch_out
.
append
((
im
,
boxes
,
lbls
,
iscrowd
))
if
len
(
batch_out
)
==
batch_size
:
yield
batch_out
batch_out
=
[]
if
mode
==
'test'
and
len
(
batch_out
)
>
1
:
yield
batch_out
batch_out
=
[]
return
reader
def
pascalvoc
(
settings
,
file_list
,
mode
,
batch_size
,
shuffle
):
def
reader
():
if
mode
==
'train'
and
shuffle
:
np
.
random
.
shuffle
(
file_list
)
batch_out
=
[]
cnt
=
0
for
image
in
file_list
:
image_path
,
label_path
=
image
.
split
()
image_path
=
os
.
path
.
join
(
settings
.
data_dir
,
image_path
)
label_path
=
os
.
path
.
join
(
settings
.
data_dir
,
label_path
)
if
not
os
.
path
.
exists
(
image_path
):
raise
ValueError
(
"%s is not exist, you should specify "
"data path correctly."
%
image_path
)
im
=
Image
.
open
(
image_path
)
if
im
.
mode
==
'L'
:
im
=
im
.
convert
(
'RGB'
)
im_width
,
im_height
=
im
.
size
# layout: label | xmin | ymin | xmax | ymax | difficult
bbox_labels
=
[]
root
=
xml
.
etree
.
ElementTree
.
parse
(
label_path
).
getroot
()
for
object
in
root
.
findall
(
'object'
):
bbox_sample
=
[]
# start from 1
bbox_sample
.
append
(
float
(
settings
.
label_list
.
index
(
object
.
find
(
'name'
).
text
)))
bbox
=
object
.
find
(
'bndbox'
)
difficult
=
float
(
object
.
find
(
'difficult'
).
text
)
bbox_sample
.
append
(
float
(
bbox
.
find
(
'xmin'
).
text
)
/
im_width
)
bbox_sample
.
append
(
float
(
bbox
.
find
(
'ymin'
).
text
)
/
im_height
)
bbox_sample
.
append
(
float
(
bbox
.
find
(
'xmax'
).
text
)
/
im_width
)
bbox_sample
.
append
(
float
(
bbox
.
find
(
'ymax'
).
text
)
/
im_height
)
bbox_sample
.
append
(
difficult
)
bbox_labels
.
append
(
bbox_sample
)
im
,
sample_labels
=
preprocess
(
im
,
bbox_labels
,
mode
,
settings
)
sample_labels
=
np
.
array
(
sample_labels
)
if
len
(
sample_labels
)
==
0
:
continue
im
=
im
.
astype
(
'float32'
)
boxes
=
sample_labels
[:,
1
:
5
]
lbls
=
sample_labels
[:,
0
].
astype
(
'int32'
)
difficults
=
sample_labels
[:,
-
1
].
astype
(
'int32'
)
batch_out
.
append
((
im
,
boxes
,
lbls
,
difficults
))
if
len
(
batch_out
)
==
batch_size
:
yield
batch_out
cnt
+=
len
(
batch_out
)
batch_out
=
[]
if
mode
==
'test'
and
len
(
batch_out
)
>
1
:
yield
batch_out
cnt
+=
len
(
batch_out
)
batch_out
=
[]
return
reader
def
train
(
settings
,
file_list
,
batch_size
,
shuffle
=
True
,
num_workers
=
8
,
enable_ce
=
False
):
file_path
=
os
.
path
.
join
(
settings
.
data_dir
,
file_list
)
readers
=
[]
if
'coco'
in
settings
.
dataset
:
# cocoapi
from
pycocotools.coco
import
COCO
coco_api
=
COCO
(
file_path
)
image_ids
=
coco_api
.
getImgIds
()
images
=
coco_api
.
loadImgs
(
image_ids
)
np
.
random
.
shuffle
(
images
)
n
=
int
(
math
.
ceil
(
len
(
images
)
//
num_workers
))
image_lists
=
[
images
[
i
:
i
+
n
]
for
i
in
range
(
0
,
len
(
images
),
n
)]
if
'2014'
in
file_list
:
sub_dir
=
"train2014"
elif
'2017'
in
file_list
:
sub_dir
=
"train2017"
data_dir
=
os
.
path
.
join
(
settings
.
data_dir
,
sub_dir
)
for
l
in
image_lists
:
readers
.
append
(
coco
(
settings
,
coco_api
,
l
,
'train'
,
batch_size
,
shuffle
,
data_dir
))
else
:
images
=
[
line
.
strip
()
for
line
in
open
(
file_path
)]
np
.
random
.
shuffle
(
images
)
n
=
int
(
math
.
ceil
(
len
(
images
)
//
num_workers
))
image_lists
=
[
images
[
i
:
i
+
n
]
for
i
in
range
(
0
,
len
(
images
),
n
)]
for
l
in
image_lists
:
readers
.
append
(
pascalvoc
(
settings
,
l
,
'train'
,
batch_size
,
shuffle
))
return
paddle
.
reader
.
multiprocess_reader
(
readers
,
False
)
def
test
(
settings
,
file_list
,
batch_size
):
file_list
=
os
.
path
.
join
(
settings
.
data_dir
,
file_list
)
if
'coco'
in
settings
.
dataset
:
from
pycocotools.coco
import
COCO
coco_api
=
COCO
(
file_list
)
image_ids
=
coco_api
.
getImgIds
()
images
=
coco_api
.
loadImgs
(
image_ids
)
if
'2014'
in
file_list
:
sub_dir
=
"val2014"
elif
'2017'
in
file_list
:
sub_dir
=
"val2017"
data_dir
=
os
.
path
.
join
(
settings
.
data_dir
,
sub_dir
)
return
coco
(
settings
,
coco_api
,
images
,
'test'
,
batch_size
,
False
,
data_dir
)
else
:
image_list
=
[
line
.
strip
()
for
line
in
open
(
file_list
)]
return
pascalvoc
(
settings
,
image_list
,
'test'
,
batch_size
,
False
)
def
infer
(
settings
,
image_path
):
def
reader
():
if
not
os
.
path
.
exists
(
image_path
):
raise
ValueError
(
"%s is not exist, you should specify "
"data path correctly."
%
image_path
)
img
=
Image
.
open
(
image_path
)
if
img
.
mode
==
'L'
:
img
=
img
.
convert
(
'RGB'
)
im_width
,
im_height
=
img
.
size
img
=
img
.
resize
((
settings
.
resize_w
,
settings
.
resize_h
),
Image
.
ANTIALIAS
)
img
=
np
.
array
(
img
)
# HWC to CHW
if
len
(
img
.
shape
)
==
3
:
img
=
np
.
swapaxes
(
img
,
1
,
2
)
img
=
np
.
swapaxes
(
img
,
1
,
0
)
# RBG to BGR
img
=
img
[[
2
,
1
,
0
],
:,
:]
img
=
img
.
astype
(
'float32'
)
img
-=
settings
.
img_mean
img
=
img
*
0.007843
return
img
return
reader
PaddleCV/Research/astar2019/score.py
0 → 100644
浏览文件 @
2df26c04
import
os
# os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# os.environ["FLAGS_fraction_of_gpu_memory_to_use"] = "0.3"
import
sys
sys
.
path
.
insert
(
0
,
"."
)
import
argparse
import
functools
import
paddle.fluid
as
fluid
import
reader
from
utils
import
*
import
json
from
pycocotools.coco
import
COCO
from
pycocotools.cocoeval
import
COCOeval
import
tempfile
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
add_arg
=
functools
.
partial
(
add_arguments
,
argparser
=
parser
)
# yapf: disable
add_arg
(
'batch_size'
,
int
,
32
,
"Minibatch size."
)
add_arg
(
'data_dir'
,
str
,
''
,
"The data root path."
)
add_arg
(
'test_list'
,
str
,
''
,
"The testing data lists."
)
add_arg
(
'model_dir'
,
str
,
''
,
"The model path."
)
add_arg
(
'nms_threshold'
,
float
,
0.45
,
"NMS threshold."
)
add_arg
(
'ap_version'
,
str
,
'cocoMAP'
,
"cocoMAP."
)
add_arg
(
'mean_value_B'
,
float
,
127.5
,
"Mean value for B channel which will be subtracted."
)
#123.68
add_arg
(
'mean_value_G'
,
float
,
127.5
,
"Mean value for G channel which will be subtracted."
)
#116.78
add_arg
(
'mean_value_R'
,
float
,
127.5
,
"Mean value for R channel which will be subtracted."
)
#103.94
def
use_coco_api_compute_mAP
(
data_args
,
test_list
,
num_classes
,
test_reader
,
exe
,
infer_program
,
feeded_var_names
,
feeder
,
target_var
,
batch_size
):
cocoGt
=
COCO
(
os
.
path
.
join
(
data_args
.
data_dir
,
test_list
))
json_category_id_to_contiguous_id
=
{
v
:
i
+
1
for
i
,
v
in
enumerate
(
cocoGt
.
getCatIds
())
}
contiguous_category_id_to_json_id
=
{
v
:
k
for
k
,
v
in
json_category_id_to_contiguous_id
.
items
()
}
dts_res
=
[]
executor
=
fluid
.
Executor
(
fluid
.
CUDAPlace
(
0
))
test_program
=
fluid
.
Program
()
with
fluid
.
program_guard
(
test_program
):
boxes
=
fluid
.
layers
.
data
(
name
=
'boxes'
,
shape
=
[
-
1
,
-
1
,
4
],
dtype
=
'float32'
)
scores
=
fluid
.
layers
.
data
(
name
=
'scores'
,
shape
=
[
-
1
,
-
1
,
num_classes
],
dtype
=
'float32'
)
pred_result
=
fluid
.
layers
.
multiclass_nms
(
bboxes
=
boxes
,
scores
=
scores
,
score_threshold
=
0.01
,
nms_top_k
=-
1
,
nms_threshold
=
0.45
,
keep_top_k
=-
1
,
normalized
=
False
)
executor
.
run
(
fluid
.
default_startup_program
())
for
batch_id
,
data
in
enumerate
(
test_reader
()):
boxes_np
,
socres_np
=
exe
.
run
(
program
=
infer_program
,
feed
=
{
feeded_var_names
[
0
]:
feeder
.
feed
(
data
)[
'image'
]},
fetch_list
=
target_var
)
nms_out
=
executor
.
run
(
program
=
test_program
,
feed
=
{
'boxes'
:
boxes_np
,
'scores'
:
socres_np
},
fetch_list
=
[
pred_result
],
return_numpy
=
False
)
if
batch_id
%
20
==
0
:
print
(
"Batch {0}"
.
format
(
batch_id
))
dts_res
+=
get_batch_dt_res
(
nms_out
,
data
,
contiguous_category_id_to_json_id
,
batch_size
)
_
,
tmp_file
=
tempfile
.
mkstemp
()
with
open
(
tmp_file
,
'w'
)
as
outfile
:
json
.
dump
(
dts_res
,
outfile
)
print
(
"start evaluate using coco api"
)
cocoDt
=
cocoGt
.
loadRes
(
tmp_file
)
cocoEval
=
COCOeval
(
cocoGt
,
cocoDt
,
"bbox"
)
cocoEval
.
evaluate
()
cocoEval
.
accumulate
()
cocoEval
.
summarize
()
mAP
=
cocoEval
.
stats
[
0
]
return
mAP
def
compute_score
(
model_dir
,
data_dir
,
test_list
=
'annotations/instances_val2017.json'
,
batch_size
=
32
,
height
=
300
,
width
=
300
,
num_classes
=
81
,
mean_value
=
[
127.5
,
127.5
,
127.5
]):
"""
compute score, mAP, flops of a model
Args:
model_dir (string): directory of model
data_dir (string): directory of coco dataset, like '/your/path/to/coco', '/work/datasets/coco'
Returns:
tuple: score, mAP, flops.
"""
place
=
fluid
.
CUDAPlace
(
0
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
[
infer_program
,
feeded_var_names
,
target_var
]
=
fluid
.
io
.
load_inference_model
(
dirname
=
model_dir
,
executor
=
exe
)
image_shape
=
[
3
,
height
,
width
]
data_args
=
reader
.
Settings
(
dataset
=
'coco2017'
,
data_dir
=
data_dir
,
resize_h
=
height
,
resize_w
=
width
,
mean_value
=
mean_value
,
apply_distort
=
False
,
apply_expand
=
False
,
ap_version
=
'cocoMAP'
)
image
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
image_shape
,
dtype
=
'float32'
)
gt_box
=
fluid
.
layers
.
data
(
name
=
'gt_box'
,
shape
=
[
4
],
dtype
=
'float32'
,
lod_level
=
1
)
gt_label
=
fluid
.
layers
.
data
(
name
=
'gt_label'
,
shape
=
[
1
],
dtype
=
'int32'
,
lod_level
=
1
)
gt_iscrowd
=
fluid
.
layers
.
data
(
name
=
'gt_iscrowd'
,
shape
=
[
1
],
dtype
=
'int32'
,
lod_level
=
1
)
gt_image_info
=
fluid
.
layers
.
data
(
name
=
'gt_image_id'
,
shape
=
[
3
],
dtype
=
'int32'
)
test_reader
=
reader
.
test
(
data_args
,
test_list
,
batch_size
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
image
,
gt_box
,
gt_label
,
gt_iscrowd
,
gt_image_info
])
mAP
=
use_coco_api_compute_mAP
(
data_args
,
test_list
,
num_classes
,
test_reader
,
exe
,
infer_program
,
feeded_var_names
,
feeder
,
target_var
,
batch_size
)
total_flops_params
,
is_quantize
=
summary
(
infer_program
)
MAdds
=
np
.
sum
(
total_flops_params
[
'flops'
])
/
2000000.0
if
is_quantize
:
MAdds
/=
2.0
print
(
'mAP:'
,
mAP
)
print
(
'MAdds:'
,
MAdds
)
if
MAdds
<
160.0
:
MAdds
=
160.0
if
MAdds
>
1300.0
:
score
=
0.0
else
:
score
=
mAP
*
100
-
(
5.1249
*
np
.
log
(
MAdds
)
-
14.499
)
print
(
'score:'
,
score
)
return
score
,
mAP
,
MAdds
if
__name__
==
'__main__'
:
args
=
parser
.
parse_args
()
print_arguments
(
args
)
score
,
mAP
,
flops
=
compute_score
(
args
.
model_dir
,
args
.
data_dir
,
batch_size
=
args
.
batch_size
)
PaddleCV/Research/astar2019/utils.py
0 → 100644
浏览文件 @
2df26c04
"""Contains common utility functions."""
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
from
collections
import
OrderedDict
from
prettytable
import
PrettyTable
import
distutils.util
import
numpy
as
np
import
six
def
print_arguments
(
args
):
"""Print argparse's arguments.
Usage:
.. code-block:: python
parser = argparse.ArgumentParser()
parser.add_argument("name", default="Jonh", type=str, help="User name.")
args = parser.parse_args()
print_arguments(args)
:param args: Input argparse.Namespace for printing.
:type args: argparse.Namespace
"""
print
(
"----------- Configuration Arguments -----------"
)
for
arg
,
value
in
sorted
(
six
.
iteritems
(
vars
(
args
))):
print
(
"%s: %s"
%
(
arg
,
value
))
print
(
"------------------------------------------------"
)
def
add_arguments
(
argname
,
type
,
default
,
help
,
argparser
,
**
kwargs
):
"""Add argparse's argument.
Usage:
.. code-block:: python
parser = argparse.ArgumentParser()
add_argument("name", str, "Jonh", "User name.", parser)
args = parser.parse_args()
"""
type
=
distutils
.
util
.
strtobool
if
type
==
bool
else
type
argparser
.
add_argument
(
"--"
+
argname
,
default
=
default
,
type
=
type
,
help
=
help
+
' Default: %(default)s.'
,
**
kwargs
)
def
summary
(
main_prog
):
'''
It can summary model's PARAMS, FLOPs until now.
It support common operator like conv, fc, pool, relu, sigmoid, bn etc.
Args:
main_prog: main program
Returns:
print summary on terminal
'''
collected_ops_list
=
[]
is_quantize
=
False
for
one_b
in
main_prog
.
blocks
:
block_vars
=
one_b
.
vars
for
one_op
in
one_b
.
ops
:
if
str
(
one_op
.
type
).
find
(
'quantize'
)
>
-
1
:
is_quantize
=
True
op_info
=
OrderedDict
()
spf_res
=
_summary_model
(
block_vars
,
one_op
)
if
spf_res
is
None
:
continue
# TODO: get the operator name
op_info
[
'type'
]
=
one_op
.
type
op_info
[
'input_shape'
]
=
spf_res
[
0
][
1
:]
op_info
[
'out_shape'
]
=
spf_res
[
1
][
1
:]
op_info
[
'PARAMs'
]
=
spf_res
[
2
]
op_info
[
'FLOPs'
]
=
spf_res
[
3
]
collected_ops_list
.
append
(
op_info
)
summary_table
,
total
=
_format_summary
(
collected_ops_list
)
_print_summary
(
summary_table
,
total
)
return
total
,
is_quantize
def
_summary_model
(
block_vars
,
one_op
):
'''
Compute operator's params and flops.
Args:
block_vars: all vars of one block
one_op: one operator to count
Returns:
in_data_shape: one operator's input data shape
out_data_shape: one operator's output data shape
params: one operator's PARAMs
flops: : one operator's FLOPs
'''
if
one_op
.
type
in
[
'conv2d'
,
'depthwise_conv2d'
]:
k_arg_shape
=
block_vars
[
one_op
.
input
(
"Filter"
)[
0
]].
shape
in_data_shape
=
block_vars
[
one_op
.
input
(
"Input"
)[
0
]].
shape
out_data_shape
=
block_vars
[
one_op
.
output
(
"Output"
)[
0
]].
shape
c_out
,
c_in
,
k_h
,
k_w
=
k_arg_shape
_
,
c_out_
,
h_out
,
w_out
=
out_data_shape
assert
c_out
==
c_out_
,
'shape error!'
k_groups
=
one_op
.
attr
(
"groups"
)
kernel_ops
=
k_h
*
k_w
*
(
c_in
/
k_groups
)
bias_ops
=
0
if
one_op
.
input
(
"Bias"
)
==
[]
else
1
params
=
c_out
*
(
kernel_ops
+
bias_ops
)
flops
=
h_out
*
w_out
*
c_out
*
(
kernel_ops
+
bias_ops
)
# base nvidia paper, include mul and add
flops
=
2
*
flops
# var_name = block_vars[one_op.input("Filter")[0]].name
# if var_name.endswith('.int8'):
# flops /= 2.0
elif
one_op
.
type
==
'pool2d'
:
in_data_shape
=
block_vars
[
one_op
.
input
(
"X"
)[
0
]].
shape
out_data_shape
=
block_vars
[
one_op
.
output
(
"Out"
)[
0
]].
shape
_
,
c_out
,
h_out
,
w_out
=
out_data_shape
k_size
=
one_op
.
attr
(
"ksize"
)
params
=
0
flops
=
h_out
*
w_out
*
c_out
*
(
k_size
[
0
]
*
k_size
[
1
])
elif
one_op
.
type
==
'mul'
:
k_arg_shape
=
block_vars
[
one_op
.
input
(
"Y"
)[
0
]].
shape
in_data_shape
=
block_vars
[
one_op
.
input
(
"X"
)[
0
]].
shape
out_data_shape
=
block_vars
[
one_op
.
output
(
"Out"
)[
0
]].
shape
# TODO: fc has mul ops
# add attr to mul op, tell us whether it belongs to 'fc'
# this's not the best way
if
'fc'
not
in
one_op
.
output
(
"Out"
)[
0
]:
return
None
k_in
,
k_out
=
k_arg_shape
# bias in sum op
params
=
k_in
*
k_out
+
1
flops
=
k_in
*
k_out
# var_name = block_vars[one_op.input("Y")[0]].name
# if var_name.endswith('.int8'):
# flops /= 2.0
elif
one_op
.
type
in
[
'sigmoid'
,
'tanh'
,
'relu'
,
'leaky_relu'
,
'prelu'
]:
in_data_shape
=
block_vars
[
one_op
.
input
(
"X"
)[
0
]].
shape
out_data_shape
=
block_vars
[
one_op
.
output
(
"Out"
)[
0
]].
shape
params
=
0
if
one_op
.
type
==
'prelu'
:
params
=
1
flops
=
1
for
one_dim
in
in_data_shape
[
1
:]:
flops
*=
one_dim
elif
one_op
.
type
==
'batch_norm'
:
in_data_shape
=
block_vars
[
one_op
.
input
(
"X"
)[
0
]].
shape
out_data_shape
=
block_vars
[
one_op
.
output
(
"Y"
)[
0
]].
shape
_
,
c_in
,
h_out
,
w_out
=
in_data_shape
# gamma, beta
params
=
c_in
*
2
# compute mean and std
flops
=
h_out
*
w_out
*
c_in
*
2
else
:
return
None
return
in_data_shape
,
out_data_shape
,
params
,
flops
def
_format_summary
(
collected_ops_list
):
'''
Format summary report.
Args:
collected_ops_list: the collected operator with summary
Returns:
summary_table: summary report format
total: sum param and flops
'''
summary_table
=
PrettyTable
(
[
"No."
,
"TYPE"
,
"INPUT"
,
"OUTPUT"
,
"PARAMs"
,
"FLOPs"
])
summary_table
.
align
=
'r'
total
=
{}
total_params
=
[]
total_flops
=
[]
for
i
,
one_op
in
enumerate
(
collected_ops_list
):
# notice the order
table_row
=
[
i
,
one_op
[
'type'
],
one_op
[
'input_shape'
],
one_op
[
'out_shape'
],
int
(
one_op
[
'PARAMs'
]),
int
(
one_op
[
'FLOPs'
]),
]
summary_table
.
add_row
(
table_row
)
total_params
.
append
(
int
(
one_op
[
'PARAMs'
]))
total_flops
.
append
(
int
(
one_op
[
'FLOPs'
]))
total
[
'params'
]
=
total_params
total
[
'flops'
]
=
total_flops
return
summary_table
,
total
def
_print_summary
(
summary_table
,
total
):
'''
Print all the summary on terminal.
Args:
summary_table: summary report format
total: sum param and flops
'''
parmas
=
total
[
'params'
]
flops
=
total
[
'flops'
]
print
(
summary_table
)
print
(
'Total PARAMs: {}({:.4f}M)'
.
format
(
sum
(
parmas
),
sum
(
parmas
)
/
(
10
**
6
)))
print
(
'Total FLOPs: {}({:.2f}G)'
.
format
(
sum
(
flops
),
sum
(
flops
)
/
10
**
9
))
print
(
"Notice:
\n
now supported ops include [Conv, DepthwiseConv, FC(mul), BatchNorm, Pool, Activation(sigmoid, tanh, relu, leaky_relu, prelu)]"
)
def
get_batch_dt_res
(
nmsed_out_v
,
data
,
contiguous_category_id_to_json_id
,
batch_size
):
dts_res
=
[]
lod
=
nmsed_out_v
[
0
].
lod
()[
0
]
nmsed_out_v
=
np
.
array
(
nmsed_out_v
[
0
])
real_batch_size
=
min
(
batch_size
,
len
(
data
))
assert
(
len
(
lod
)
==
real_batch_size
+
1
),
\
"Error Lod Tensor offset dimension. Lod({}) vs. batch_size({})"
.
format
(
len
(
lod
),
batch_size
)
k
=
0
for
i
in
range
(
real_batch_size
):
dt_num_this_img
=
lod
[
i
+
1
]
-
lod
[
i
]
image_id
=
int
(
data
[
i
][
4
][
0
])
image_width
=
int
(
data
[
i
][
4
][
1
])
image_height
=
int
(
data
[
i
][
4
][
2
])
for
j
in
range
(
dt_num_this_img
):
dt
=
nmsed_out_v
[
k
]
k
=
k
+
1
category_id
,
score
,
xmin
,
ymin
,
xmax
,
ymax
=
dt
.
tolist
()
xmin
=
max
(
min
(
xmin
,
1.0
),
0.0
)
*
image_width
ymin
=
max
(
min
(
ymin
,
1.0
),
0.0
)
*
image_height
xmax
=
max
(
min
(
xmax
,
1.0
),
0.0
)
*
image_width
ymax
=
max
(
min
(
ymax
,
1.0
),
0.0
)
*
image_height
w
=
xmax
-
xmin
h
=
ymax
-
ymin
bbox
=
[
xmin
,
ymin
,
w
,
h
]
dt_res
=
{
'image_id'
:
image_id
,
'category_id'
:
contiguous_category_id_to_json_id
[
category_id
],
'bbox'
:
bbox
,
'score'
:
score
}
dts_res
.
append
(
dt_res
)
return
dts_res
\ No newline at end of file
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录