base_network.py 19.9 KB
Newer Older
L
lvmengsi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

from __future__ import division
import paddle.fluid as fluid
import numpy as np
L
lvmengsi 已提交
18
import math
L
lvmengsi 已提交
19
import os
L
lvmengsi 已提交
20
import warnings
L
lvmengsi 已提交
21 22 23 24 25 26

use_cudnn = True
if 'ce_mode' in os.environ:
    use_cudnn = False


L
lvmengsi 已提交
27 28 29 30 31 32 33 34 35 36
def cal_padding(img_size, stride, filter_size, dilation=1):
    """Calculate padding size."""
    valid_filter_size = dilation * (filter_size - 1) + 1
    if img_size % stride == 0:
        out_size = max(filter_size - stride, 0)
    else:
        out_size = max(filter_size - (img_size % stride), 0)
    return out_size // 2, out_size - out_size // 2


L
lvmengsi 已提交
37 38 39 40 41
def norm_layer(input,
               norm_type='batch_norm',
               name=None,
               is_test=False,
               affine=True):
L
lvmengsi 已提交
42
    if norm_type == 'batch_norm':
Z
zhumanyu 已提交
43 44
        if affine == True:
            param_attr = fluid.ParamAttr(
C
ceci3 已提交
45 46 47
                name=name + '_w',
                initializer=fluid.initializer.Normal(
                    loc=1.0, scale=0.02))
Z
zhumanyu 已提交
48
            bias_attr = fluid.ParamAttr(
L
lvmengsi 已提交
49 50
                name=name + '_b',
                initializer=fluid.initializer.Constant(value=0.0))
Z
zhumanyu 已提交
51 52
        else:
            param_attr = fluid.ParamAttr(
L
lvmengsi 已提交
53 54 55
                name=name + '_w',
                initializer=fluid.initializer.Constant(1.0),
                trainable=False)
Z
zhumanyu 已提交
56
            bias_attr = fluid.ParamAttr(
L
lvmengsi 已提交
57 58 59
                name=name + '_b',
                initializer=fluid.initializer.Constant(value=0.0),
                trainable=False)
L
lvmengsi 已提交
60 61 62 63
        return fluid.layers.batch_norm(
            input,
            param_attr=param_attr,
            bias_attr=bias_attr,
L
lvmengsi 已提交
64
            is_test=is_test,
L
lvmengsi 已提交
65 66 67 68 69 70 71
            moving_mean_name=name + '_mean',
            moving_variance_name=name + '_var')

    elif norm_type == 'instance_norm':
        if name is not None:
            scale_name = name + "_scale"
            offset_name = name + "_offset"
Z
zhumanyu 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
        if affine:
            scale_param = fluid.ParamAttr(
                name=scale_name,
                initializer=fluid.initializer.Constant(1.0),
                trainable=True)
            offset_param = fluid.ParamAttr(
                name=offset_name,
                initializer=fluid.initializer.Constant(0.0),
                trainable=True)
        else:
            scale_param = fluid.ParamAttr(
                name=scale_name,
                initializer=fluid.initializer.Constant(1.0),
                trainable=False)
            offset_param = fluid.ParamAttr(
                name=offset_name,
                initializer=fluid.initializer.Constant(0.0),
                trainable=False)
C
ceci3 已提交
90 91
        return fluid.layers.instance_norm(
            input, param_attr=scale_param, bias_attr=offset_param)
L
lvmengsi 已提交
92
    else:
L
lvmengsi 已提交
93
        raise NotImplementedError("norm type: [%s] is not support" % norm_type)
L
lvmengsi 已提交
94 95


L
lvmengsi 已提交
96
def initial_type(name,
L
lvmengsi 已提交
97 98 99
                 input,
                 op_type,
                 fan_out,
L
lvmengsi 已提交
100 101 102 103 104
                 init="normal",
                 use_bias=False,
                 filter_size=0,
                 stddev=0.02):
    if init == "kaiming":
L
lvmengsi 已提交
105 106 107 108 109 110 111 112 113
        if op_type == 'conv':
            fan_in = input.shape[1] * filter_size * filter_size
        elif op_type == 'deconv':
            fan_in = fan_out * filter_size * filter_size
        else:
            if len(input.shape) > 2:
                fan_in = input.shape[1] * input.shape[2] * input.shape[3]
            else:
                fan_in = input.shape[1]
L
lvmengsi 已提交
114 115 116
        bound = 1 / math.sqrt(fan_in)
        param_attr = fluid.ParamAttr(
            name=name + "_w",
L
lvmengsi 已提交
117 118
            initializer=fluid.initializer.Uniform(
                low=-bound, high=bound))
L
lvmengsi 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
        if use_bias == True:
            bias_attr = fluid.ParamAttr(
                name=name + '_b',
                initializer=fluid.initializer.Uniform(
                    low=-bound, high=bound))
        else:
            bias_attr = False
    else:
        param_attr = fluid.ParamAttr(
            name=name + "_w",
            initializer=fluid.initializer.NormalInitializer(
                loc=0.0, scale=stddev))
        if use_bias == True:
            bias_attr = fluid.ParamAttr(
                name=name + "_b", initializer=fluid.initializer.Constant(0.0))
        else:
            bias_attr = False
    return param_attr, bias_attr


L
lvmengsi 已提交
139 140 141 142 143 144 145 146 147
def conv2d(input,
           num_filters=64,
           filter_size=7,
           stride=1,
           stddev=0.02,
           padding=0,
           name="conv2d",
           norm=None,
           activation_fn=None,
L
lvmengsi 已提交
148
           relufactor=0.2,
L
lvmengsi 已提交
149 150
           use_bias=False,
           padding_type=None,
L
lvmengsi 已提交
151 152
           initial="normal",
           is_test=False):
L
lvmengsi 已提交
153 154 155 156 157 158 159 160

    if padding != 0 and padding_type != None:
        warnings.warn(
            'padding value and padding type are set in the same time, and the final padding width and padding height are computed by padding_type'
        )

    param_attr, bias_attr = initial_type(
        name=name,
L
lvmengsi 已提交
161 162 163
        input=input,
        op_type='conv',
        fan_out=num_filters,
L
lvmengsi 已提交
164 165 166 167 168 169 170 171 172
        init=initial,
        use_bias=use_bias,
        filter_size=filter_size,
        stddev=stddev)

    need_crop = False
    if padding_type == "SAME":
        top_padding, bottom_padding = cal_padding(input.shape[2], stride,
                                                  filter_size)
L
lvmengsi 已提交
173
        left_padding, right_padding = cal_padding(input.shape[3], stride,
L
lvmengsi 已提交
174 175 176 177 178 179 180 181 182 183 184 185
                                                  filter_size)
        height_padding = bottom_padding
        width_padding = right_padding
        if top_padding != bottom_padding or left_padding != right_padding:
            height_padding = top_padding + stride
            width_padding = left_padding + stride
            need_crop = True
        padding = [height_padding, width_padding]
    elif padding_type == "VALID":
        height_padding = 0
        width_padding = 0
        padding = [height_padding, width_padding]
L
lvmengsi 已提交
186
    else:
L
lvmengsi 已提交
187
        padding = padding
L
lvmengsi 已提交
188 189 190 191 192 193 194 195 196 197 198

    conv = fluid.layers.conv2d(
        input,
        num_filters,
        filter_size,
        name=name,
        stride=stride,
        padding=padding,
        use_cudnn=use_cudnn,
        param_attr=param_attr,
        bias_attr=bias_attr)
L
lvmengsi 已提交
199 200 201 202 203
    if need_crop:
        conv = fluid.layers.crop(
            conv,
            shape=(-1, conv.shape[1], conv.shape[2] - 1, conv.shape[3] - 1),
            offsets=(0, 0, 1, 1))
L
lvmengsi 已提交
204
    if norm is not None:
L
lvmengsi 已提交
205 206
        conv = norm_layer(
            input=conv, norm_type=norm, name=name + "_norm", is_test=is_test)
L
lvmengsi 已提交
207 208 209
    if activation_fn == 'relu':
        conv = fluid.layers.relu(conv, name=name + '_relu')
    elif activation_fn == 'leaky_relu':
L
lvmengsi 已提交
210 211 212
        if relufactor == 0.0:
            raise Warning(
                "the activation is leaky_relu, but the relufactor is 0")
L
lvmengsi 已提交
213 214 215 216
        conv = fluid.layers.leaky_relu(
            conv, alpha=relufactor, name=name + '_leaky_relu')
    elif activation_fn == 'tanh':
        conv = fluid.layers.tanh(conv, name=name + '_tanh')
L
lvmengsi 已提交
217 218
    elif activation_fn == 'sigmoid':
        conv = fluid.layers.sigmoid(conv, name=name + '_sigmoid')
L
lvmengsi 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232
    elif activation_fn == None:
        conv = conv
    else:
        raise NotImplementedError("activation: [%s] is not support" %
                                  activation_fn)

    return conv


def deconv2d(input,
             num_filters=64,
             filter_size=7,
             stride=1,
             stddev=0.02,
L
lvmengsi 已提交
233
             padding=0,
L
lvmengsi 已提交
234 235 236 237
             outpadding=[0, 0, 0, 0],
             name="deconv2d",
             norm=None,
             activation_fn=None,
L
lvmengsi 已提交
238
             relufactor=0.2,
L
lvmengsi 已提交
239
             use_bias=False,
L
lvmengsi 已提交
240 241
             padding_type=None,
             output_size=None,
L
lvmengsi 已提交
242 243
             initial="normal",
             is_test=False):
L
lvmengsi 已提交
244 245 246 247 248 249 250 251

    if padding != 0 and padding_type != None:
        warnings.warn(
            'padding value and padding type are set in the same time, and the final padding width and padding height are computed by padding_type'
        )

    param_attr, bias_attr = initial_type(
        name=name,
L
lvmengsi 已提交
252 253 254
        input=input,
        op_type='deconv',
        fan_out=num_filters,
L
lvmengsi 已提交
255 256 257 258 259 260 261 262 263
        init=initial,
        use_bias=use_bias,
        filter_size=filter_size,
        stddev=stddev)

    need_crop = False
    if padding_type == "SAME":
        top_padding, bottom_padding = cal_padding(input.shape[2], stride,
                                                  filter_size)
L
lvmengsi 已提交
264
        left_padding, right_padding = cal_padding(input.shape[3], stride,
L
lvmengsi 已提交
265 266 267 268 269 270 271 272 273 274 275 276
                                                  filter_size)
        height_padding = bottom_padding
        width_padding = right_padding
        if top_padding != bottom_padding or left_padding != right_padding:
            height_padding = top_padding + stride
            width_padding = left_padding + stride
            need_crop = True
        padding = [height_padding, width_padding]
    elif padding_type == "VALID":
        height_padding = 0
        width_padding = 0
        padding = [height_padding, width_padding]
L
lvmengsi 已提交
277
    else:
L
lvmengsi 已提交
278
        padding = padding
L
lvmengsi 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291

    conv = fluid.layers.conv2d_transpose(
        input,
        num_filters,
        output_size=output_size,
        name=name,
        filter_size=filter_size,
        stride=stride,
        padding=padding,
        use_cudnn=use_cudnn,
        param_attr=param_attr,
        bias_attr=bias_attr)

L
lvmengsi 已提交
292
    if np.mean(outpadding) != 0 and padding_type == None:
L
lvmengsi 已提交
293 294
        conv = fluid.layers.pad2d(
            conv, paddings=outpadding, mode='constant', pad_value=0.0)
L
lvmengsi 已提交
295 296

    if norm is not None:
L
lvmengsi 已提交
297 298
        conv = norm_layer(
            input=conv, norm_type=norm, name=name + "_norm", is_test=is_test)
L
lvmengsi 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
    if activation_fn == 'relu':
        conv = fluid.layers.relu(conv, name=name + '_relu')
    elif activation_fn == 'leaky_relu':
        if relufactor == 0.0:
            raise Warning(
                "the activation is leaky_relu, but the relufactor is 0")
        conv = fluid.layers.leaky_relu(
            conv, alpha=relufactor, name=name + '_leaky_relu')
    elif activation_fn == 'tanh':
        conv = fluid.layers.tanh(conv, name=name + '_tanh')
    elif activation_fn == 'sigmoid':
        conv = fluid.layers.sigmoid(conv, name=name + '_sigmoid')
    elif activation_fn == None:
        conv = conv
    else:
        raise NotImplementedError("activation: [%s] is not support" %
                                  activation_fn)

    return conv


def linear(input,
           output_size,
           norm=None,
           stddev=0.02,
           activation_fn=None,
           relufactor=0.2,
L
lvmengsi 已提交
326
           name="linear",
L
lvmengsi 已提交
327 328
           initial="normal",
           is_test=False):
L
lvmengsi 已提交
329 330 331

    param_attr, bias_attr = initial_type(
        name=name,
L
lvmengsi 已提交
332 333 334
        input=input,
        op_type='linear',
        fan_out=output_size,
L
lvmengsi 已提交
335 336 337 338 339
        init=initial,
        use_bias=True,
        filter_size=1,
        stddev=stddev)

L
lvmengsi 已提交
340 341 342 343 344 345 346
    linear = fluid.layers.fc(input,
                             output_size,
                             param_attr=param_attr,
                             bias_attr=bias_attr,
                             name=name)

    if norm is not None:
L
lvmengsi 已提交
347 348
        linear = norm_layer(
            input=linear, norm_type=norm, name=name + '_norm', is_test=is_test)
L
lvmengsi 已提交
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
    if activation_fn == 'relu':
        linear = fluid.layers.relu(linear, name=name + '_relu')
    elif activation_fn == 'leaky_relu':
        if relufactor == 0.0:
            raise Warning(
                "the activation is leaky_relu, but the relufactor is 0")
        linear = fluid.layers.leaky_relu(
            linear, alpha=relufactor, name=name + '_leaky_relu')
    elif activation_fn == 'tanh':
        linear = fluid.layers.tanh(linear, name=name + '_tanh')
    elif activation_fn == 'sigmoid':
        linear = fluid.layers.sigmoid(linear, name=name + '_sigmoid')
    elif activation_fn == None:
        linear = linear
    else:
        raise NotImplementedError("activation: [%s] is not support" %
                                  activation_fn)

    return linear


def conv_cond_concat(x, y):
C
ceci3 已提交
371 372 373 374 375
    batch = fluid.layers.shape(x)[0]
    ones = fluid.layers.fill_constant(
        shape=[ones, y.shape[1], x.shape[2], x.shape[3]],
        dtype="float32",
        value=1.0)
L
lvmengsi 已提交
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
    out = fluid.layers.concat([x, ones * y], 1)
    return out


def conv_and_pool(x, num_filters, name, stddev=0.02, act=None):
    param_attr = fluid.ParamAttr(
        name=name + '_w',
        initializer=fluid.initializer.NormalInitializer(
            loc=0.0, scale=stddev))
    bias_attr = fluid.ParamAttr(
        name=name + "_b", initializer=fluid.initializer.Constant(0.0))

    out = fluid.nets.simple_img_conv_pool(
        input=x,
        filter_size=5,
        num_filters=num_filters,
        pool_size=2,
        pool_stride=2,
        param_attr=param_attr,
        bias_attr=bias_attr,
        act=act)
    return out
L
lvmengsi 已提交
398 399


Z
zhumanyu 已提交
400 401 402 403 404 405 406 407 408 409 410 411 412
def conv2d_spectral_norm(input,
                         num_filters=64,
                         filter_size=7,
                         stride=1,
                         stddev=0.02,
                         padding=0,
                         name="conv2d_spectral_norm",
                         norm=None,
                         activation_fn=None,
                         relufactor=0.0,
                         use_bias=False,
                         padding_type=None,
                         initial="normal",
L
lvmengsi 已提交
413 414
                         is_test=False,
                         norm_affine=True):
Z
zhumanyu 已提交
415 416 417 418 419 420
    b, c, h, w = input.shape
    height = num_filters
    width = c * filter_size * filter_size
    helper = fluid.layer_helper.LayerHelper("conv2d_spectral_norm", **locals())
    dtype = helper.input_dtype()
    weight_param = fluid.ParamAttr(
L
lvmengsi 已提交
421
        name=name + ".weight_orig",
L
lvmengsi 已提交
422 423
        initializer=fluid.initializer.Normal(
            loc=0.0, scale=1.0),
Z
zhumanyu 已提交
424 425
        trainable=True)
    weight = helper.create_parameter(
L
lvmengsi 已提交
426 427 428 429 430
        attr=weight_param,
        shape=(num_filters, c, filter_size, filter_size),
        dtype=dtype)
    weight_spectral_norm = fluid.layers.spectral_norm(
        weight, dim=0, name=name + ".spectral_norm")
Z
zhumanyu 已提交
431 432 433
    weight = weight_spectral_norm
    if use_bias:
        bias_attr = fluid.ParamAttr(
L
lvmengsi 已提交
434 435 436
            name=name + "_b",
            initializer=fluid.initializer.Normal(
                loc=0.0, scale=1.0))
Z
zhumanyu 已提交
437 438
    else:
        bias_attr = False
L
lvmengsi 已提交
439 440
    conv = conv2d_with_filter(
        input, weight, stride, padding, bias_attr=bias_attr, name=name)
Z
zhumanyu 已提交
441 442
    if norm is not None:
        conv = norm_layer(
L
lvmengsi 已提交
443 444 445 446 447
            input=conv,
            norm_type=norm,
            name=name + "_norm",
            is_test=is_test,
            affine=norm_affine)
Z
zhumanyu 已提交
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
    if activation_fn == 'relu':
        conv = fluid.layers.relu(conv, name=name + '_relu')
    elif activation_fn == 'leaky_relu':
        conv = fluid.layers.leaky_relu(
            conv, alpha=relufactor, name=name + '_leaky_relu')
    elif activation_fn == 'tanh':
        conv = fluid.layers.tanh(conv, name=name + '_tanh')
    elif activation_fn == 'sigmoid':
        conv = fluid.layers.sigmoid(conv, name=name + '_sigmoid')
    elif activation_fn == None:
        conv = conv
    else:
        raise NotImplementedError("activation: [%s] is not support" %
                                  activation_fn)
    return conv


def conv2d_with_filter(input,
                       filter,
                       stride=1,
                       padding=0,
                       dilation=1,
                       groups=None,
                       bias_attr=None,
                       use_cudnn=True,
                       act=None,
                       name=None):
    """ 
    Similar with conv2d, this is a convolution2D layers. Difference
    is filter can be token as input directly instead of setting filter size
    and number of fliters. Filter is a  4-D tensor with shape 
    [num_filter, num_channel, filter_size_h, filter_size_w].
     Args:
        input (Variable): The input image with [N, C, H, W] format.
        filter(Variable): The input filter with [N, C, H, W] format.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None
    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
        .. code-block:: python
C
ceci3 已提交
511
          data = fluid.data(name='data', shape=[None, 3, 32, 32], \
Z
zhumanyu 已提交
512
                                  dtype='float32')
C
ceci3 已提交
513
          filter = fluid.data(name='filter',shape=[None, 10, 3, 3, 3], \
Z
zhumanyu 已提交
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
                                    dtype='float32',append_batch_size=False)
          conv2d = fluid.layers.conv2d(input=data, 
                                       filter=filter,
                                       act="relu") 
    """
    helper = fluid.layer_helper.LayerHelper("conv2d_with_filter", **locals())
    num_channels = input.shape[1]
    num_filters = filter.shape[0]
    num_filter_channels = filter.shape[1]
    l_type = 'conv2d'
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
        l_type = 'depthwise_conv2d'
    if groups is None:
        assert num_filter_channels == num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        if num_channels // groups != num_filter_channels:
            raise ValueError("num_filter_channels must equal to num_channels\
                              divided by groups.")
    stride = fluid.layers.utils.convert_to_list(stride, 2, 'stride')
    padding = fluid.layers.utils.convert_to_list(padding, 2, 'padding')
    dilation = fluid.layers.utils.convert_to_list(dilation, 2, 'dilation')
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': False
        })
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    return helper.append_activation(pre_act)