Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
b0d375a8
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b0d375a8
编写于
5月 12, 2020
作者:
C
ceci3
提交者:
GitHub
5月 12, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update GAN to 1.8 (#4599)
* fix init * update * update_1.8 * update paddle.reader
上级
4d7ec517
变更
14
隐藏空白更改
内联
并排
Showing
14 changed file
with
210 addition
and
173 deletion
+210
-173
PaddleCV/gan/c_gan/c_gan.py
PaddleCV/gan/c_gan/c_gan.py
+6
-5
PaddleCV/gan/c_gan/dc_gan.py
PaddleCV/gan/c_gan/dc_gan.py
+6
-5
PaddleCV/gan/c_gan/network.py
PaddleCV/gan/c_gan/network.py
+6
-2
PaddleCV/gan/data_reader.py
PaddleCV/gan/data_reader.py
+3
-2
PaddleCV/gan/network/AttGAN_network.py
PaddleCV/gan/network/AttGAN_network.py
+8
-3
PaddleCV/gan/network/STGAN_network.py
PaddleCV/gan/network/STGAN_network.py
+8
-3
PaddleCV/gan/network/base_network.py
PaddleCV/gan/network/base_network.py
+8
-3
PaddleCV/gan/trainer/AttGAN.py
PaddleCV/gan/trainer/AttGAN.py
+38
-36
PaddleCV/gan/trainer/CGAN.py
PaddleCV/gan/trainer/CGAN.py
+3
-2
PaddleCV/gan/trainer/DCGAN.py
PaddleCV/gan/trainer/DCGAN.py
+3
-2
PaddleCV/gan/trainer/Pix2pix.py
PaddleCV/gan/trainer/Pix2pix.py
+16
-20
PaddleCV/gan/trainer/SPADE.py
PaddleCV/gan/trainer/SPADE.py
+24
-23
PaddleCV/gan/trainer/STGAN.py
PaddleCV/gan/trainer/STGAN.py
+49
-43
PaddleCV/gan/trainer/StarGAN.py
PaddleCV/gan/trainer/StarGAN.py
+32
-24
未找到文件。
PaddleCV/gan/c_gan/c_gan.py
浏览文件 @
b0d375a8
...
...
@@ -79,10 +79,11 @@ def train(args):
g_program_test
=
dg_program
.
clone
(
for_test
=
True
)
dg_logit
=
D_cond
(
g_img
,
conditions
)
dg_logit_shape
=
fluid
.
layers
.
shape
(
dg_logit
)
dg_loss
=
loss
(
dg_logit
,
fluid
.
layers
.
fill_constant
_batch_size_like
(
input
=
noise
,
dtype
=
'float32'
,
shape
=
[
-
1
,
1
],
value
=
1.0
))
fluid
.
layers
.
fill_constant
(
dtype
=
'float32'
,
shape
=
[
dg_logit_shape
[
0
]
,
1
],
value
=
1.0
))
opt
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
LEARNING_RATE
)
...
...
@@ -96,11 +97,11 @@ def train(args):
exe
=
fluid
.
Executor
(
fluid
.
CUDAPlace
(
0
))
exe
.
run
(
fluid
.
default_startup_program
())
if
args
.
run_ce
:
train_reader
=
paddle
.
batch
(
train_reader
=
fluid
.
io
.
batch
(
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
args
.
batch_size
)
else
:
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
train_reader
=
fluid
.
io
.
batch
(
fluid
.
io
.
shuffle
(
paddle
.
dataset
.
mnist
.
train
(),
buf_size
=
60000
),
batch_size
=
args
.
batch_size
)
...
...
PaddleCV/gan/c_gan/dc_gan.py
浏览文件 @
b0d375a8
...
...
@@ -74,10 +74,11 @@ def train(args):
g_program_test
=
dg_program
.
clone
(
for_test
=
True
)
dg_logit
=
D
(
g_img
)
dg_logit_shape
=
fluid
.
layers
.
shape
(
dg_logit
)
dg_loss
=
loss
(
dg_logit
,
fluid
.
layers
.
fill_constant
_batch_size_like
(
input
=
noise
,
dtype
=
'float32'
,
shape
=
[
-
1
,
1
]
,
value
=
1.0
))
fluid
.
layers
.
fill_constant
(
shape
=
[
dg_logit_shape
[
0
],
1
],
dtype
=
'float32'
,
value
=
1.0
))
opt
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
LEARNING_RATE
)
...
...
@@ -92,11 +93,11 @@ def train(args):
exe
.
run
(
fluid
.
default_startup_program
())
if
args
.
run_ce
:
train_reader
=
paddle
.
batch
(
train_reader
=
fluid
.
io
.
batch
(
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
args
.
batch_size
)
else
:
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
train_reader
=
fluid
.
io
.
batch
(
fluid
.
io
.
shuffle
(
paddle
.
dataset
.
mnist
.
train
(),
buf_size
=
60000
),
batch_size
=
args
.
batch_size
)
...
...
PaddleCV/gan/c_gan/network.py
浏览文件 @
b0d375a8
...
...
@@ -34,6 +34,7 @@ use_cudnn = True
if
'ce_mode'
in
os
.
environ
:
use_cudnn
=
False
def
bn
(
x
,
name
=
None
,
act
=
'relu'
):
if
name
is
None
:
name
=
get_parent_function_name
()
...
...
@@ -100,8 +101,11 @@ def deconv(x,
def
conv_cond_concat
(
x
,
y
):
"""Concatenate conditioning vector on feature map axis."""
ones
=
fluid
.
layers
.
fill_constant_batch_size_like
(
x
,
[
-
1
,
y
.
shape
[
1
],
x
.
shape
[
2
],
x
.
shape
[
3
]],
"float32"
,
1.0
)
x_shape
=
fluid
.
layers
.
shape
(
x
)
ones
=
fluid
.
layers
.
fill_constant
(
shape
=
[
x_shape
[
0
],
y
.
shape
[
1
],
x
.
shape
[
2
],
x
.
shape
[
3
]],
dtype
=
'float32'
,
value
=
1.0
)
return
fluid
.
layers
.
concat
([
x
,
ones
*
y
],
1
)
...
...
PaddleCV/gan/data_reader.py
浏览文件 @
b0d375a8
...
...
@@ -22,6 +22,7 @@ import argparse
import
struct
import
os
import
paddle
import
paddle.fluid
as
fluid
import
random
import
sys
...
...
@@ -520,8 +521,8 @@ class data_reader(object):
train_labels
=
os
.
path
.
join
(
self
.
cfg
.
data_dir
,
self
.
cfg
.
dataset
,
"train-labels-idx1-ubyte.gz"
)
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
train_reader
=
fluid
.
io
.
batch
(
fluid
.
io
.
shuffle
(
mnist_reader_creator
(
train_images
,
train_labels
,
100
),
buf_size
=
60000
),
batch_size
=
self
.
cfg
.
batch_size
)
...
...
PaddleCV/gan/network/AttGAN_network.py
浏览文件 @
b0d375a8
...
...
@@ -60,9 +60,14 @@ class AttGAN_model(object):
def
concat
(
self
,
z
,
a
):
"""Concatenate attribute vector on feature map axis."""
ones
=
fluid
.
layers
.
fill_constant_batch_size_like
(
z
,
[
-
1
,
a
.
shape
[
1
],
z
.
shape
[
2
],
z
.
shape
[
3
]],
"float32"
,
1.0
)
return
fluid
.
layers
.
concat
([
z
,
fluid
.
layers
.
elementwise_mul
(
ones
,
a
,
axis
=
0
)],
axis
=
1
)
batch
=
fluid
.
layers
.
shape
(
z
)[
0
]
ones
=
fluid
.
layers
.
fill_constant
(
shape
=
[
batch
,
a
.
shape
[
1
],
z
.
shape
[
2
],
z
.
shape
[
3
]],
dtype
=
"float32"
,
value
=
1.0
)
return
fluid
.
layers
.
concat
(
[
z
,
fluid
.
layers
.
elementwise_mul
(
ones
,
a
,
axis
=
0
)],
axis
=
1
)
def
Genc
(
self
,
input
,
dim
=
64
,
n_layers
=
5
,
name
=
'G_enc_'
,
is_test
=
False
):
z
=
input
...
...
PaddleCV/gan/network/STGAN_network.py
浏览文件 @
b0d375a8
...
...
@@ -82,9 +82,14 @@ class STGAN_model(object):
def
concat
(
self
,
z
,
a
):
"""Concatenate attribute vector on feature map axis."""
ones
=
fluid
.
layers
.
fill_constant_batch_size_like
(
z
,
[
-
1
,
a
.
shape
[
1
],
z
.
shape
[
2
],
z
.
shape
[
3
]],
"float32"
,
1.0
)
return
fluid
.
layers
.
concat
([
z
,
fluid
.
layers
.
elementwise_mul
(
ones
,
a
,
axis
=
0
)],
axis
=
1
)
batch
=
fluid
.
layers
.
shape
(
z
)[
0
]
ones
=
fluid
.
layers
.
fill_constant
(
shape
=
[
batch
,
a
.
shape
[
1
],
z
.
shape
[
2
],
z
.
shape
[
3
]],
dtype
=
"float32"
,
value
=
1.0
)
return
fluid
.
layers
.
concat
(
[
z
,
fluid
.
layers
.
elementwise_mul
(
ones
,
a
,
axis
=
0
)],
axis
=
1
)
def
Genc
(
self
,
input
,
dim
=
64
,
n_layers
=
5
,
name
=
'G_enc_'
,
is_test
=
False
):
z
=
input
...
...
PaddleCV/gan/network/base_network.py
浏览文件 @
b0d375a8
...
...
@@ -42,7 +42,9 @@ def norm_layer(input,
if
norm_type
==
'batch_norm'
:
if
affine
==
True
:
param_attr
=
fluid
.
ParamAttr
(
name
=
name
+
'_w'
,
initializer
=
fluid
.
initializer
.
Normal
(
loc
=
1.0
,
scale
=
0.02
))
name
=
name
+
'_w'
,
initializer
=
fluid
.
initializer
.
Normal
(
loc
=
1.0
,
scale
=
0.02
))
bias_attr
=
fluid
.
ParamAttr
(
name
=
name
+
'_b'
,
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.0
))
...
...
@@ -366,8 +368,11 @@ def linear(input,
def
conv_cond_concat
(
x
,
y
):
ones
=
fluid
.
layers
.
fill_constant_batch_size_like
(
x
,
[
-
1
,
y
.
shape
[
1
],
x
.
shape
[
2
],
x
.
shape
[
3
]],
"float32"
,
1.0
)
batch
=
fluid
.
layers
.
shape
(
x
)[
0
]
ones
=
fluid
.
layers
.
fill_constant
(
shape
=
[
ones
,
y
.
shape
[
1
],
x
.
shape
[
2
],
x
.
shape
[
3
]],
dtype
=
"float32"
,
value
=
1.0
)
out
=
fluid
.
layers
.
concat
([
x
,
ones
*
y
],
1
)
return
out
...
...
PaddleCV/gan/trainer/AttGAN.py
浏览文件 @
b0d375a8
...
...
@@ -44,11 +44,9 @@ class GTrainer():
self
.
g_loss_fake
=
-
1
*
fluid
.
layers
.
mean
(
self
.
pred_fake
)
#lsgan
elif
cfg
.
gan_mode
==
"lsgan"
:
ones
=
fluid
.
layers
.
fill_constant_batch_size_like
(
input
=
self
.
pred_fake
,
shape
=
self
.
pred_fake
.
shape
,
value
=
1.0
,
dtype
=
'float32'
)
fake_shape
=
fluid
.
layers
.
shape
(
self
.
pred_fake
)
ones
=
fluid
.
layers
.
fill_constant
(
shape
=
fake_shape
,
value
=
1.0
,
dtype
=
'float32'
)
self
.
g_loss_fake
=
fluid
.
layers
.
mean
(
fluid
.
layers
.
square
(
fluid
.
layers
.
elementwise_sub
(
...
...
@@ -106,11 +104,9 @@ class DTrainer():
self
.
d_loss
=
self
.
d_loss_real
+
self
.
d_loss_fake
+
1.0
*
self
.
d_loss_cls
+
cfg
.
lambda_gp
*
self
.
d_loss_gp
#lsgan
elif
cfg
.
gan_mode
==
"lsgan"
:
ones
=
fluid
.
layers
.
fill_constant_batch_size_like
(
input
=
self
.
pred_real
,
shape
=
self
.
pred_real
.
shape
,
value
=
1.0
,
dtype
=
'float32'
)
real_shape
=
fluid
.
layers
.
shape
(
self
.
pred_real
)
ones
=
fluid
.
layers
.
fill_constant
(
shape
=
real_shape
,
value
=
1.0
,
dtype
=
'float32'
)
self
.
d_loss_real
=
fluid
.
layers
.
mean
(
fluid
.
layers
.
square
(
fluid
.
layers
.
elementwise_sub
(
...
...
@@ -145,31 +141,31 @@ class DTrainer():
def
gradient_penalty
(
self
,
f
,
real
,
fake
=
None
,
cfg
=
None
,
name
=
None
):
def
_interpolate
(
a
,
b
=
None
):
a_shape
=
fluid
.
layers
.
shape
(
a
)
if
b
is
None
:
if
cfg
.
enable_ce
:
beta
=
fluid
.
layers
.
uniform_random
_batch_size_like
(
input
=
a
,
shape
=
a
.
shape
,
min
=
0.0
,
max
=
1.0
,
seed
=
1
)
beta
=
fluid
.
layers
.
uniform_random
(
shape
=
a_
shape
,
min
=
0.0
,
max
=
1.0
,
seed
=
1
)
else
:
beta
=
fluid
.
layers
.
uniform_random
_batch_size_like
(
input
=
a
,
shape
=
a
.
shape
,
min
=
0.0
,
max
=
1.0
)
beta
=
fluid
.
layers
.
uniform_random
(
shape
=
a_
shape
,
min
=
0.0
,
max
=
1.0
)
mean
=
fluid
.
layers
.
reduce_mean
(
a
,
dim
=
list
(
range
(
len
(
a
.
shape
)))
,
keep_dim
=
True
)
a
,
dim
=
list
(
range
(
len
(
a
.
shape
))))
input_sub_mean
=
fluid
.
layers
.
elementwise_sub
(
a
,
mean
,
axis
=
0
)
var
=
fluid
.
layers
.
reduce_mean
(
fluid
.
layers
.
square
(
input_sub_mean
),
dim
=
list
(
range
(
len
(
a
.
shape
))),
keep_dim
=
True
)
dim
=
list
(
range
(
len
(
a
.
shape
))))
b
=
beta
*
fluid
.
layers
.
sqrt
(
var
)
*
0.5
+
a
shape
=
[
a
.
shape
[
0
]]
if
cfg
.
enable_ce
:
alpha
=
fluid
.
layers
.
uniform_random_batch_size_like
(
input
=
a
,
shape
=
shape
,
min
=
0.0
,
max
=
1.0
,
seed
=
1
)
alpha
=
fluid
.
layers
.
uniform_random
(
shape
=
a_shape
[
0
]
,
min
=
0.0
,
max
=
1.0
,
seed
=
1
)
else
:
alpha
=
fluid
.
layers
.
uniform_random_batch_size_like
(
input
=
a
,
shape
=
shape
,
min
=
0.0
,
max
=
1.0
)
alpha
=
fluid
.
layers
.
uniform_random
(
shape
=
a_shape
[
0
]
,
min
=
0.0
,
max
=
1.0
)
inner
=
fluid
.
layers
.
elementwise_mul
((
b
-
a
),
alpha
,
axis
=
0
)
+
a
inner
=
fluid
.
layers
.
elementwise_mul
((
b
-
a
),
alpha
,
axis
=
0
)
+
a
return
inner
x
=
_interpolate
(
real
,
fake
)
...
...
@@ -336,7 +332,7 @@ class AttGAN(object):
if
self
.
cfg
.
enable_ce
:
gen_trainer_program
.
random_seed
=
90
dis_trainer_program
.
random_seed
=
90
t_time
=
0
for
epoch_id
in
range
(
self
.
cfg
.
epoch
):
...
...
@@ -379,7 +375,7 @@ class AttGAN(object):
sys
.
stdout
.
flush
()
batch_id
+=
1
if
self
.
cfg
.
enable_ce
and
batch_id
==
100
:
break
break
if
self
.
cfg
.
run_test
:
image_name
=
fluid
.
data
(
...
...
@@ -402,17 +398,23 @@ class AttGAN(object):
test_loader
)
if
self
.
cfg
.
save_checkpoints
:
utility
.
checkpoints
(
epoch_id
,
self
.
cfg
,
gen_trainer
,
"net_G"
)
utility
.
checkpoints
(
epoch_id
,
self
.
cfg
,
dis_trainer
,
"net_D"
)
utility
.
checkpoints
(
epoch_id
,
self
.
cfg
,
gen_trainer
,
"net_G"
)
utility
.
checkpoints
(
epoch_id
,
self
.
cfg
,
dis_trainer
,
"net_D"
)
# used for continuous evaluation
if
self
.
cfg
.
enable_ce
:
device_num
=
fluid
.
core
.
get_cuda_device_count
()
if
self
.
cfg
.
use_gpu
else
1
print
(
"kpis
\t
attgan_g_loss_fake_card{}
\t
{}"
.
format
(
device_num
,
g_loss_fake
[
0
]))
print
(
"kpis
\t
attgan_g_loss_rec_card{}
\t
{}"
.
format
(
device_num
,
g_loss_rec
[
0
]))
print
(
"kpis
\t
attgan_g_loss_cls_card{}
\t
{}"
.
format
(
device_num
,
g_loss_cls
[
0
]))
print
(
"kpis
\t
attgan_d_loss_real_card{}
\t
{}"
.
format
(
device_num
,
d_loss_real
[
0
]))
print
(
"kpis
\t
attgan_d_loss_fake_card{}
\t
{}"
.
format
(
device_num
,
d_loss_fake
[
0
]))
print
(
"kpis
\t
attgan_d_loss_gp_card{}
\t
{}"
.
format
(
device_num
,
d_loss_gp
[
0
]))
print
(
"kpis
\t
attgan_Batch_time_cost_card{}
\t
{}"
.
format
(
device_num
,
batch_time
))
device_num
=
fluid
.
core
.
get_cuda_device_count
(
)
if
self
.
cfg
.
use_gpu
else
1
print
(
"kpis
\t
attgan_g_loss_fake_card{}
\t
{}"
.
format
(
device_num
,
g_loss_fake
[
0
]))
print
(
"kpis
\t
attgan_g_loss_rec_card{}
\t
{}"
.
format
(
device_num
,
g_loss_rec
[
0
]))
print
(
"kpis
\t
attgan_g_loss_cls_card{}
\t
{}"
.
format
(
device_num
,
g_loss_cls
[
0
]))
print
(
"kpis
\t
attgan_d_loss_real_card{}
\t
{}"
.
format
(
device_num
,
d_loss_real
[
0
]))
print
(
"kpis
\t
attgan_d_loss_fake_card{}
\t
{}"
.
format
(
device_num
,
d_loss_fake
[
0
]))
print
(
"kpis
\t
attgan_d_loss_gp_card{}
\t
{}"
.
format
(
device_num
,
d_loss_gp
[
0
]))
print
(
"kpis
\t
attgan_Batch_time_cost_card{}
\t
{}"
.
format
(
device_num
,
batch_time
))
PaddleCV/gan/trainer/CGAN.py
浏览文件 @
b0d375a8
...
...
@@ -37,8 +37,9 @@ class GTrainer():
self
.
fake
=
model
.
network_G
(
input
,
conditions
,
name
=
"G"
)
self
.
infer_program
=
self
.
program
.
clone
(
for_test
=
True
)
d_fake
=
model
.
network_D
(
self
.
fake
,
conditions
,
name
=
"D"
)
fake_labels
=
fluid
.
layers
.
fill_constant_batch_size_like
(
input
=
input
,
dtype
=
'float32'
,
shape
=
[
-
1
,
1
],
value
=
1.0
)
batch
=
fluid
.
layers
.
shape
(
input
)[
0
]
fake_labels
=
fluid
.
layers
.
fill_constant
(
dtype
=
'float32'
,
shape
=
[
batch
,
1
],
value
=
1.0
)
self
.
g_loss
=
fluid
.
layers
.
reduce_mean
(
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
x
=
d_fake
,
label
=
fake_labels
))
...
...
PaddleCV/gan/trainer/DCGAN.py
浏览文件 @
b0d375a8
...
...
@@ -38,8 +38,9 @@ class GTrainer():
self
.
fake
=
model
.
network_G
(
input
,
name
=
'G'
)
self
.
infer_program
=
self
.
program
.
clone
(
for_test
=
True
)
d_fake
=
model
.
network_D
(
self
.
fake
,
name
=
"D"
)
fake_labels
=
fluid
.
layers
.
fill_constant_batch_size_like
(
input
,
dtype
=
'float32'
,
shape
=
[
-
1
,
1
],
value
=
1.0
)
batch
=
fluid
.
layers
.
shape
(
input
)[
0
]
fake_labels
=
fluid
.
layers
.
fill_constant
(
dtype
=
'float32'
,
shape
=
[
batch
,
1
],
value
=
1.0
)
self
.
g_loss
=
fluid
.
layers
.
reduce_mean
(
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
x
=
d_fake
,
label
=
fake_labels
))
...
...
PaddleCV/gan/trainer/Pix2pix.py
浏览文件 @
b0d375a8
...
...
@@ -33,10 +33,10 @@ class GTrainer():
self
.
infer_program
=
self
.
program
.
clone
()
AB
=
fluid
.
layers
.
concat
([
input_A
,
self
.
fake_B
],
1
)
self
.
pred
=
model
.
network_D
(
AB
,
"discriminator"
,
cfg
)
batch
=
fluid
.
layers
.
shape
(
self
.
pred
)[
0
]
if
cfg
.
gan_mode
==
"lsgan"
:
ones
=
fluid
.
layers
.
fill_constant_batch_size_like
(
input
=
self
.
pred
,
shape
=
self
.
pred
.
shape
,
ones
=
fluid
.
layers
.
fill_constant
(
shape
=
[
batch
]
+
list
(
self
.
pred
.
shape
[
1
:]),
value
=
1
,
dtype
=
'float32'
)
self
.
g_loss_gan
=
fluid
.
layers
.
reduce_mean
(
...
...
@@ -49,9 +49,8 @@ class GTrainer():
self
.
pred
,
[
-
1
,
pred_shape
[
1
]
*
pred_shape
[
2
]
*
pred_shape
[
3
]],
inplace
=
True
)
ones
=
fluid
.
layers
.
fill_constant_batch_size_like
(
input
=
self
.
pred
,
shape
=
self
.
pred
.
shape
,
ones
=
fluid
.
layers
.
fill_constant
(
shape
=
[
batch
]
+
list
(
self
.
pred
.
shape
[
1
:]),
value
=
1
,
dtype
=
'float32'
)
self
.
g_loss_gan
=
fluid
.
layers
.
mean
(
...
...
@@ -106,10 +105,10 @@ class DTrainer():
self
.
real_AB
,
"discriminator"
,
cfg
=
cfg
)
self
.
pred_fake
=
model
.
network_D
(
self
.
fake_AB
,
"discriminator"
,
cfg
=
cfg
)
batch
=
fluid
.
layers
.
shape
(
input_A
)[
0
]
if
cfg
.
gan_mode
==
"lsgan"
:
ones
=
fluid
.
layers
.
fill_constant_batch_size_like
(
input
=
self
.
pred_real
,
shape
=
self
.
pred_real
.
shape
,
ones
=
fluid
.
layers
.
fill_constant
(
shape
=
[
batch
]
+
list
(
self
.
pred_real
.
shape
[
1
:]),
value
=
1
,
dtype
=
'float32'
)
self
.
d_loss_real
=
fluid
.
layers
.
reduce_mean
(
...
...
@@ -128,14 +127,12 @@ class DTrainer():
self
.
pred_fake
,
[
-
1
,
pred_shape
[
1
]
*
pred_shape
[
2
]
*
pred_shape
[
3
]],
inplace
=
True
)
zeros
=
fluid
.
layers
.
fill_constant_batch_size_like
(
input
=
self
.
pred_fake
,
shape
=
self
.
pred_fake
.
shape
,
zeros
=
fluid
.
layers
.
fill_constant
(
shape
=
[
batch
]
+
list
(
self
.
pred_fake
.
shape
[
1
:]),
value
=
0
,
dtype
=
'float32'
)
ones
=
fluid
.
layers
.
fill_constant_batch_size_like
(
input
=
self
.
pred_real
,
shape
=
self
.
pred_real
.
shape
,
ones
=
fluid
.
layers
.
fill_constant
(
shape
=
[
batch
]
+
list
(
self
.
pred_real
.
shape
[
1
:]),
value
=
1
,
dtype
=
'float32'
)
self
.
d_loss_real
=
fluid
.
layers
.
mean
(
...
...
@@ -283,7 +280,8 @@ class Pix2pix(object):
devices_num
=
utility
.
get_device_num
(
self
.
cfg
)
fake_per_device
=
int
(
len
(
fake_B_tmp
)
/
devices_num
)
for
dev
in
range
(
devices_num
):
tensor
[
dev
][
'input_fake'
]
=
fake_B_tmp
[
dev
*
fake_per_device
:
(
dev
+
1
)
*
fake_per_device
]
tensor
[
dev
][
'input_fake'
]
=
fake_B_tmp
[
dev
*
fake_per_device
:(
dev
+
1
)
*
fake_per_device
]
# optimize the discriminator network
d_loss_real
,
d_loss_fake
=
exe
.
run
(
dis_trainer_program
,
...
...
@@ -338,10 +336,8 @@ class Pix2pix(object):
A_id2name
=
self
.
id2name
)
if
self
.
cfg
.
save_checkpoints
:
utility
.
checkpoints
(
epoch_id
,
self
.
cfg
,
gen_trainer
,
"net_G"
)
utility
.
checkpoints
(
epoch_id
,
self
.
cfg
,
dis_trainer
,
"net_D"
)
utility
.
checkpoints
(
epoch_id
,
self
.
cfg
,
gen_trainer
,
"net_G"
)
utility
.
checkpoints
(
epoch_id
,
self
.
cfg
,
dis_trainer
,
"net_D"
)
if
self
.
cfg
.
enable_ce
:
device_num
=
fluid
.
core
.
get_cuda_device_count
(
)
if
self
.
cfg
.
use_gpu
else
1
...
...
PaddleCV/gan/trainer/SPADE.py
浏览文件 @
b0d375a8
...
...
@@ -144,11 +144,9 @@ class DTrainer():
#####gan loss
self
.
gan_loss_fake
=
0
for
pred_i
in
self
.
pred_fake
:
zeros
=
fluid
.
layers
.
fill_constant_batch_size_like
(
input
=
pred_i
[
-
1
],
shape
=
pred_i
[
-
1
].
shape
,
value
=
0
,
dtype
=
'float32'
)
pred_shape
=
fluid
.
layers
.
shape
(
pred_i
[
-
1
])
zeros
=
fluid
.
layers
.
fill_constant
(
shape
=
pred_shape
,
value
=
0
,
dtype
=
'float32'
)
if
isinstance
(
pred_i
,
list
):
pred_i
=
pred_i
[
-
1
]
minval
=
fluid
.
layers
.
elementwise_min
(
-
1
*
pred_i
-
1
,
zeros
)
...
...
@@ -158,11 +156,9 @@ class DTrainer():
self
.
gan_loss_real
=
0
for
pred_i
in
self
.
pred_real
:
zeros
=
fluid
.
layers
.
fill_constant_batch_size_like
(
input
=
pred_i
[
-
1
],
shape
=
pred_i
[
-
1
].
shape
,
value
=
0
,
dtype
=
'float32'
)
pred_shape
=
fluid
.
layers
.
shape
(
pred_i
[
-
1
])
zeros
=
fluid
.
layers
.
fill_constant
(
shape
=
pred_shape
,
value
=
0
,
dtype
=
'float32'
)
if
isinstance
(
pred_i
,
list
):
pred_i
=
pred_i
[
-
1
]
minval
=
fluid
.
layers
.
elementwise_min
(
pred_i
-
1
,
zeros
)
...
...
@@ -298,7 +294,7 @@ class SPADE(object):
name
=
'input_fake'
,
shape
=
data_shape
,
dtype
=
'float32'
)
# used for continuous evaluation
if
self
.
cfg
.
enable_ce
:
fluid
.
default_startup_program
().
random_seed
=
90
fluid
.
default_startup_program
().
random_seed
=
90
gen_trainer
=
GTrainer
(
input_A
,
input_B
,
input_C
,
self
.
cfg
,
self
.
batch_num
)
...
...
@@ -348,7 +344,7 @@ class SPADE(object):
if
self
.
cfg
.
enable_ce
:
gen_trainer_program
.
random_seed
=
90
dis_trainer_program
.
random_seed
=
90
t_time
=
0
for
epoch_id
in
range
(
self
.
cfg
.
epoch
):
...
...
@@ -422,16 +418,21 @@ class SPADE(object):
A_id2name
=
self
.
id2name
)
if
self
.
cfg
.
save_checkpoints
:
utility
.
checkpoints
(
epoch_id
,
self
.
cfg
,
gen_trainer
,
"net_G"
)
utility
.
checkpoints
(
epoch_id
,
self
.
cfg
,
dis_trainer
,
"net_D"
)
utility
.
checkpoints
(
epoch_id
,
self
.
cfg
,
gen_trainer
,
"net_G"
)
utility
.
checkpoints
(
epoch_id
,
self
.
cfg
,
dis_trainer
,
"net_D"
)
# used for continuous evaluation
if
self
.
cfg
.
enable_ce
:
device_num
=
fluid
.
core
.
get_cuda_device_count
()
if
self
.
cfg
.
use_gpu
else
1
print
(
"kpis
\t
spade_g_loss_gan_card{}
\t
{}"
.
format
(
device_num
,
g_loss_gan
[
0
]))
print
(
"kpis
\t
spade_g_loss_vgg_card{}
\t
{}"
.
format
(
device_num
,
g_loss_vgg
[
0
]))
print
(
"kpis
\t
spade_g_loss_feat_card{}
\t
{}"
.
format
(
device_num
,
g_loss_feat
[
0
]))
print
(
"kpis
\t
spade_d_loss_real_card{}
\t
{}"
.
format
(
device_num
,
d_loss_real
[
0
]))
print
(
"kpis
\t
spade_d_loss_fake_card{}
\t
{}"
.
format
(
device_num
,
d_loss_fake
[
0
]))
print
(
"kpis
\t
spade_Batch_time_cost_card{}
\t
{}"
.
format
(
device_num
,
batch_time
))
device_num
=
fluid
.
core
.
get_cuda_device_count
(
)
if
self
.
cfg
.
use_gpu
else
1
print
(
"kpis
\t
spade_g_loss_gan_card{}
\t
{}"
.
format
(
device_num
,
g_loss_gan
[
0
]))
print
(
"kpis
\t
spade_g_loss_vgg_card{}
\t
{}"
.
format
(
device_num
,
g_loss_vgg
[
0
]))
print
(
"kpis
\t
spade_g_loss_feat_card{}
\t
{}"
.
format
(
device_num
,
g_loss_feat
[
0
]))
print
(
"kpis
\t
spade_d_loss_real_card{}
\t
{}"
.
format
(
device_num
,
d_loss_real
[
0
]))
print
(
"kpis
\t
spade_d_loss_fake_card{}
\t
{}"
.
format
(
device_num
,
d_loss_fake
[
0
]))
print
(
"kpis
\t
spade_Batch_time_cost_card{}
\t
{}"
.
format
(
device_num
,
batch_time
))
PaddleCV/gan/trainer/STGAN.py
浏览文件 @
b0d375a8
...
...
@@ -45,11 +45,9 @@ class GTrainer():
self
.
g_loss_fake
=
-
1
*
fluid
.
layers
.
mean
(
self
.
pred_fake
)
#lsgan
elif
cfg
.
gan_mode
==
"lsgan"
:
ones
=
fluid
.
layers
.
fill_constant_batch_size_like
(
input
=
self
.
pred_fake
,
shape
=
self
.
pred_fake
.
shape
,
value
=
1.0
,
dtype
=
'float32'
)
fake_shape
=
fluid
.
layers
.
shape
(
self
.
pred_fake
)
ones
=
fluid
.
layers
.
fill_constant
(
shape
=
fake_shape
,
value
=
1.0
,
dtype
=
'float32'
)
self
.
g_loss_fake
=
fluid
.
layers
.
mean
(
fluid
.
layers
.
square
(
fluid
.
layers
.
elementwise_sub
(
...
...
@@ -108,11 +106,9 @@ class DTrainer():
self
.
d_loss
=
self
.
d_loss_real
+
self
.
d_loss_fake
+
1.0
*
self
.
d_loss_cls
+
cfg
.
lambda_gp
*
self
.
d_loss_gp
#lsgan
elif
cfg
.
gan_mode
==
"lsgan"
:
ones
=
fluid
.
layers
.
fill_constant_batch_size_like
(
input
=
self
.
pred_real
,
shape
=
self
.
pred_real
.
shape
,
value
=
1.0
,
dtype
=
'float32'
)
real_shape
=
fluid
.
layers
.
shape
(
self
.
pred_real
)
ones
=
fluid
.
layers
.
fill_constant
(
shape
=
real_shape
,
value
=
1.0
,
dtype
=
'float32'
)
self
.
d_loss_real
=
fluid
.
layers
.
mean
(
fluid
.
layers
.
square
(
fluid
.
layers
.
elementwise_sub
(
...
...
@@ -149,31 +145,30 @@ class DTrainer():
def
gradient_penalty
(
self
,
f
,
real
,
fake
=
None
,
cfg
=
None
,
name
=
None
):
def
_interpolate
(
a
,
b
=
None
):
a_shape
=
fluid
.
layers
.
shape
(
a
)
if
b
is
None
:
if
cfg
.
enable_ce
:
beta
=
fluid
.
layers
.
uniform_random_batch_size_like
(
input
=
a
,
shape
=
a
.
shape
,
min
=
0.0
,
max
=
1.0
,
seed
=
1
)
beta
=
fluid
.
layers
.
uniform_random
(
shape
=
a_
shape
,
min
=
0.0
,
max
=
1.0
,
seed
=
1
)
else
:
beta
=
fluid
.
layers
.
uniform_random_batch_size_like
(
input
=
a
,
shape
=
a
.
shape
,
min
=
0.0
,
max
=
1.0
)
beta
=
fluid
.
layers
.
uniform_random
(
shape
=
a_
shape
,
min
=
0.0
,
max
=
1.0
)
mean
=
fluid
.
layers
.
reduce_mean
(
a
,
dim
=
list
(
range
(
len
(
a
.
shape
)))
,
keep_dim
=
True
)
a
,
dim
=
list
(
range
(
len
(
a
.
shape
))))
input_sub_mean
=
fluid
.
layers
.
elementwise_sub
(
a
,
mean
,
axis
=
0
)
var
=
fluid
.
layers
.
reduce_mean
(
fluid
.
layers
.
square
(
input_sub_mean
),
dim
=
list
(
range
(
len
(
a
.
shape
))),
keep_dim
=
True
)
dim
=
list
(
range
(
len
(
a
.
shape
))))
b
=
beta
*
fluid
.
layers
.
sqrt
(
var
)
*
0.5
+
a
shape
=
[
a
.
shape
[
0
]]
if
cfg
.
enable_ce
:
alpha
=
fluid
.
layers
.
uniform_random
_batch_size_like
(
input
=
a
,
shape
=
shape
,
min
=
0.0
,
max
=
1.0
,
seed
=
1
)
else
:
alpha
=
fluid
.
layers
.
uniform_random
_batch_size_like
(
input
=
a
,
shape
=
shape
,
min
=
0.0
,
max
=
1.0
)
alpha
=
fluid
.
layers
.
uniform_random
(
shape
=
a_shape
[
0
]
,
min
=
0.0
,
max
=
1.0
,
seed
=
1
)
else
:
alpha
=
fluid
.
layers
.
uniform_random
(
shape
=
a_shape
[
0
]
,
min
=
0.0
,
max
=
1.0
)
inner
=
fluid
.
layers
.
elementwise_mul
((
b
-
a
),
alpha
,
axis
=
0
)
+
a
inner
=
fluid
.
layers
.
elementwise_mul
((
b
-
a
),
alpha
,
axis
=
0
)
+
a
return
inner
x
=
_interpolate
(
real
,
fake
)
...
...
@@ -221,7 +216,10 @@ class STGAN(object):
default
=
1024
,
help
=
"the base fc dim in discriminator"
)
parser
.
add_argument
(
'--use_gru'
,
type
=
ast
.
literal_eval
,
default
=
True
,
help
=
"whether to use GRU"
)
'--use_gru'
,
type
=
ast
.
literal_eval
,
default
=
True
,
help
=
"whether to use GRU"
)
parser
.
add_argument
(
'--lambda_cls'
,
type
=
float
,
...
...
@@ -345,7 +343,7 @@ class STGAN(object):
if
self
.
cfg
.
enable_ce
:
gen_trainer_program
.
random_seed
=
90
dis_trainer_program
.
random_seed
=
90
t_time
=
0
total_train_batch
=
0
# used for benchmark
...
...
@@ -353,7 +351,7 @@ class STGAN(object):
for
epoch_id
in
range
(
self
.
cfg
.
epoch
):
batch_id
=
0
for
data
in
loader
():
if
self
.
cfg
.
max_iter
and
total_train_batch
==
self
.
cfg
.
max_iter
:
# used for benchmark
if
self
.
cfg
.
max_iter
and
total_train_batch
==
self
.
cfg
.
max_iter
:
# used for benchmark
return
s_time
=
time
.
time
()
# optimize the discriminator network
...
...
@@ -389,7 +387,7 @@ class STGAN(object):
sys
.
stdout
.
flush
()
batch_id
+=
1
if
self
.
cfg
.
enable_ce
and
batch_id
==
100
:
break
break
total_train_batch
+=
1
# used for benchmark
# profiler tools
...
...
@@ -418,19 +416,27 @@ class STGAN(object):
test_loader
)
if
self
.
cfg
.
save_checkpoints
:
utility
.
checkpoints
(
epoch_id
,
self
.
cfg
,
gen_trainer
,
"net_G"
)
utility
.
checkpoints
(
epoch_id
,
self
.
cfg
,
dis_trainer
,
"net_D"
)
utility
.
checkpoints
(
epoch_id
,
self
.
cfg
,
gen_trainer
,
"net_G"
)
utility
.
checkpoints
(
epoch_id
,
self
.
cfg
,
dis_trainer
,
"net_D"
)
# used for continuous evaluation
if
self
.
cfg
.
enable_ce
:
device_num
=
fluid
.
core
.
get_cuda_device_count
()
if
self
.
cfg
.
use_gpu
else
1
print
(
"kpis
\t
stgan_g_loss_fake_card{}
\t
{}"
.
format
(
device_num
,
g_loss_fake
[
0
]))
print
(
"kpis
\t
stgan_g_loss_rec_card{}
\t
{}"
.
format
(
device_num
,
g_loss_rec
[
0
]))
print
(
"kpis
\t
stgan_g_loss_cls_card{}
\t
{}"
.
format
(
device_num
,
g_loss_cls
[
0
]))
print
(
"kpis
\t
stgan_d_loss_card{}
\t
{}"
.
format
(
device_num
,
d_loss
[
0
]))
print
(
"kpis
\t
stgan_d_loss_real_card{}
\t
{}"
.
format
(
device_num
,
d_loss_real
[
0
]))
print
(
"kpis
\t
stgan_d_loss_fake_card{}
\t
{}"
.
format
(
device_num
,
d_loss_fake
[
0
]))
print
(
"kpis
\t
stgan_d_loss_cls_card{}
\t
{}"
.
format
(
device_num
,
d_loss_cls
[
0
]))
print
(
"kpis
\t
stgan_d_loss_gp_card{}
\t
{}"
.
format
(
device_num
,
d_loss_gp
[
0
]))
print
(
"kpis
\t
stgan_Batch_time_cost_card{}
\t
{}"
.
format
(
device_num
,
batch_time
))
device_num
=
fluid
.
core
.
get_cuda_device_count
(
)
if
self
.
cfg
.
use_gpu
else
1
print
(
"kpis
\t
stgan_g_loss_fake_card{}
\t
{}"
.
format
(
device_num
,
g_loss_fake
[
0
]))
print
(
"kpis
\t
stgan_g_loss_rec_card{}
\t
{}"
.
format
(
device_num
,
g_loss_rec
[
0
]))
print
(
"kpis
\t
stgan_g_loss_cls_card{}
\t
{}"
.
format
(
device_num
,
g_loss_cls
[
0
]))
print
(
"kpis
\t
stgan_d_loss_card{}
\t
{}"
.
format
(
device_num
,
d_loss
[
0
]))
print
(
"kpis
\t
stgan_d_loss_real_card{}
\t
{}"
.
format
(
device_num
,
d_loss_real
[
0
]))
print
(
"kpis
\t
stgan_d_loss_fake_card{}
\t
{}"
.
format
(
device_num
,
d_loss_fake
[
0
]))
print
(
"kpis
\t
stgan_d_loss_cls_card{}
\t
{}"
.
format
(
device_num
,
d_loss_cls
[
0
]))
print
(
"kpis
\t
stgan_d_loss_gp_card{}
\t
{}"
.
format
(
device_num
,
d_loss_gp
[
0
]))
print
(
"kpis
\t
stgan_Batch_time_cost_card{}
\t
{}"
.
format
(
device_num
,
batch_time
))
PaddleCV/gan/trainer/StarGAN.py
浏览文件 @
b0d375a8
...
...
@@ -149,15 +149,17 @@ class DTrainer():
def
gradient_penalty
(
self
,
f
,
real
,
fake
,
cfg
=
None
,
name
=
None
):
def
_interpolate
(
a
,
b
):
shape
=
[
a
.
shape
[
0
]]
a_shape
=
fluid
.
layers
.
shape
(
a
)
if
cfg
.
enable_ce
:
alpha
=
fluid
.
layers
.
uniform_random_batch_size_like
(
input
=
a
,
shape
=
shape
,
min
=
0.0
,
max
=
1.0
,
seed
=
1
)
else
:
alpha
=
fluid
.
layers
.
uniform_random_batch_size_like
(
input
=
a
,
shape
=
shape
,
min
=
0.0
,
max
=
1.0
)
alpha
=
fluid
.
layers
.
uniform_random
(
shape
=
[
a_shape
[
0
]]
,
min
=
0.0
,
max
=
1.0
,
seed
=
1
)
else
:
alpha
=
fluid
.
layers
.
uniform_random
(
shape
=
[
a_shape
[
0
]]
,
min
=
0.0
,
max
=
1.0
)
inner
=
fluid
.
layers
.
elementwise_mul
(
b
,
(
1.0
-
alpha
),
axis
=
0
)
+
fluid
.
layers
.
elementwise_mul
(
a
,
alpha
,
axis
=
0
)
inner
=
fluid
.
layers
.
elementwise_mul
(
b
,
(
1.0
-
alpha
),
axis
=
0
)
+
fluid
.
layers
.
elementwise_mul
(
a
,
alpha
,
axis
=
0
)
return
inner
x
=
_interpolate
(
real
,
fake
)
...
...
@@ -316,7 +318,7 @@ class StarGAN(object):
for
epoch_id
in
range
(
self
.
cfg
.
epoch
):
batch_id
=
0
for
data
in
loader
():
if
self
.
cfg
.
max_iter
and
total_train_batch
==
self
.
cfg
.
max_iter
:
# used for benchmark
if
self
.
cfg
.
max_iter
and
total_train_batch
==
self
.
cfg
.
max_iter
:
# used for benchmark
return
s_time
=
time
.
time
()
d_loss_real
,
d_loss_fake
,
d_loss
,
d_loss_cls
,
d_loss_gp
=
exe
.
run
(
...
...
@@ -355,7 +357,7 @@ class StarGAN(object):
batch_id
+=
1
# used for ce
if
self
.
cfg
.
enable_ce
and
batch_id
==
100
:
break
break
total_train_batch
+=
1
# used for benchmark
# profiler tools
...
...
@@ -380,22 +382,28 @@ class StarGAN(object):
if
self
.
cfg
.
use_gpu
else
fluid
.
cpu_places
())
test_program
=
gen_trainer
.
infer_program
utility
.
save_test_image
(
epoch_id
,
self
.
cfg
,
exe
,
place
,
test_program
,
gen_trainer
,
test_loader
)
test_program
,
gen_trainer
,
test_loader
)
if
self
.
cfg
.
save_checkpoints
:
utility
.
checkpoints
(
epoch_id
,
self
.
cfg
,
gen_trainer
,
"net_G"
)
utility
.
checkpoints
(
epoch_id
,
self
.
cfg
,
dis_trainer
,
"net_D"
)
utility
.
checkpoints
(
epoch_id
,
self
.
cfg
,
gen_trainer
,
"net_G"
)
utility
.
checkpoints
(
epoch_id
,
self
.
cfg
,
dis_trainer
,
"net_D"
)
# used for continuous evaluation
if
self
.
cfg
.
enable_ce
:
device_num
=
fluid
.
core
.
get_cuda_device_count
()
if
self
.
cfg
.
use_gpu
else
1
print
(
"kpis
\t
stargan_g_loss_fake_card{}
\t
{}"
.
format
(
device_num
,
g_loss_fake
[
0
]))
print
(
"kpis
\t
stargan_g_loss_rec_card{}
\t
{}"
.
format
(
device_num
,
g_loss_rec
[
0
]))
print
(
"kpis
\t
stargan_g_loss_cls_card{}
\t
{}"
.
format
(
device_num
,
g_loss_cls
[
0
]))
print
(
"kpis
\t
stargan_d_loss_real_card{}
\t
{}"
.
format
(
device_num
,
d_loss_real
[
0
]))
print
(
"kpis
\t
stargan_d_loss_fake_card{}
\t
{}"
.
format
(
device_num
,
d_loss_fake
[
0
]))
print
(
"kpis
\t
stargan_d_loss_cls_card{}
\t
{}"
.
format
(
device_num
,
d_loss_cls
[
0
]))
print
(
"kpis
\t
stargan_d_loss_gp_card{}
\t
{}"
.
format
(
device_num
,
d_loss_gp
[
0
]))
print
(
"kpis
\t
stargan_Batch_time_cost_card{}
\t
{}"
.
format
(
device_num
,
batch_time
))
device_num
=
fluid
.
core
.
get_cuda_device_count
(
)
if
self
.
cfg
.
use_gpu
else
1
print
(
"kpis
\t
stargan_g_loss_fake_card{}
\t
{}"
.
format
(
device_num
,
g_loss_fake
[
0
]))
print
(
"kpis
\t
stargan_g_loss_rec_card{}
\t
{}"
.
format
(
device_num
,
g_loss_rec
[
0
]))
print
(
"kpis
\t
stargan_g_loss_cls_card{}
\t
{}"
.
format
(
device_num
,
g_loss_cls
[
0
]))
print
(
"kpis
\t
stargan_d_loss_real_card{}
\t
{}"
.
format
(
device_num
,
d_loss_real
[
0
]))
print
(
"kpis
\t
stargan_d_loss_fake_card{}
\t
{}"
.
format
(
device_num
,
d_loss_fake
[
0
]))
print
(
"kpis
\t
stargan_d_loss_cls_card{}
\t
{}"
.
format
(
device_num
,
d_loss_cls
[
0
]))
print
(
"kpis
\t
stargan_d_loss_gp_card{}
\t
{}"
.
format
(
device_num
,
d_loss_gp
[
0
]))
print
(
"kpis
\t
stargan_Batch_time_cost_card{}
\t
{}"
.
format
(
device_num
,
batch_time
))
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录