vis_utils.py 4.4 KB
Newer Older
L
Liu Yi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.nn as nn
import paddle.nn.functional as F

import cv2
import numpy as np

from smoke.ops import gather_op


def get_ratio(ori_img_size, output_size, down_ratio=(4, 4)):
    return np.array([[down_ratio[1] * ori_img_size[1] / output_size[1], 
                     down_ratio[0] * ori_img_size[0] / output_size[0]]], np.float32)

def get_img(img_path):
    img = cv2.imread(img_path)
    ori_img_size = img.shape
    img = cv2.resize(img, (960, 640))
    output_size = img.shape
    img = img/255.0
    img = np.subtract(img, np.array([0.485, 0.456, 0.406]))
    img = np.true_divide(img, np.array([0.229, 0.224, 0.225]))
    img = np.array(img, np.float32)
    img = img.transpose(2, 0, 1)
    img = img[None,:,:,:]
    img = paddle.to_tensor(img)
    return img, ori_img_size, output_size

def encode_box3d(rotys, dims, locs, K, image_size):
    '''
    construct 3d bounding box for each object.
    Args:
        rotys: rotation in shape N
        dims: dimensions of objects
        locs: locations of objects

    Returns:
        box_3d in camera frame, shape(b, 2, 8)
    '''
    if len(rotys.shape) == 2:
        rotys = rotys.flatten()
    if len(dims.shape) == 3:
        dims = paddle.reshape(dims, (-1, 3))
    if len(locs.shape) == 3:
        locs = paddle.reshape(locs, (-1, 3))

    N = rotys.shape[0]
    ry = rad_to_matrix(rotys, N)

    dims = paddle.reshape(dims, (-1, 1)).tile((1, 8))
    dims[::3, :4], dims[2::3, :4] = 0.5 * dims[::3, :4], 0.5 * dims[2::3, :4]
    dims[::3, 4:], dims[2::3, 4:] = -0.5 * dims[::3, 4:], -0.5 * dims[2::3, 4:]
    dims[1::3, :4], dims[1::3, 4:] = 0., -dims[1::3, 4:]
    index = paddle.to_tensor([[4, 0, 1, 2, 3, 5, 6, 7],
                            [4, 5, 0, 1, 6, 7, 2, 3],
                            [4, 5, 6, 0, 1, 2, 3, 7]]).tile((N, 1))

    box_3d_object = gather_op(dims, 1, index)
    box_3d = paddle.matmul(ry, paddle.reshape(box_3d_object, (N, 3, -1)))
    box_3d += locs.unsqueeze(-1).tile((1, 1, 8))

    box3d_image = paddle.matmul(K, box_3d)
    box3d_image = box3d_image[:, :2, :] / paddle.reshape(box3d_image[:, 2, :], (box_3d.shape[0], 1, box_3d.shape[2]))
    box3d_image = box3d_image.astype("int32")
    box3d_image = box3d_image.astype("float32")

    box3d_image[:, 0] = box3d_image[:, 0].clip(0, image_size[1])
    box3d_image[:, 1] = box3d_image[:, 1].clip(0, image_size[0])

    return box3d_image

def rad_to_matrix(rotys, N):

    cos, sin = rotys.cos(), rotys.sin()

    i_temp = paddle.to_tensor([[1, 0, 1],
                            [0, 1, 0],
                            [-1, 0, 1]]).astype("float32")

    ry = paddle.reshape(i_temp.tile((N, 1)), (N, -1, 3))

    ry[:, 0, 0] *= cos
    ry[:, 0, 2] *= sin
    ry[:, 2, 0] *= sin
    ry[:, 2, 2] *= cos

    return ry


def draw_box_3d(image, corners, color=None):
    ''' Draw 3d bounding box in image
        corners: (8,2) array of vertices for the 3d box in following order:
    '''

    # face_idx = [[0, 1, 5, 4],
    #             [1, 2, 6, 5],
    #             [2, 3, 7, 6],
    #             [3, 0, 4, 7]]
    if color is None:
        color = (0, 0, 255)
    face_idx = [[5, 4, 3, 6],
                [1, 2, 3, 4],
                [1, 0, 7, 2],
                [0, 5, 6, 7]]
    for ind_f in range(3, -1, -1):
        f = face_idx[ind_f]
        for j in range(4):
            cv2.line(image, (corners[f[j], 0], corners[f[j], 1]),
                     (corners[f[(j + 1) % 4], 0], corners[f[(j + 1) % 4], 1]), color, 2, lineType=cv2.LINE_AA)
        if ind_f == 0:
            cv2.line(image, (corners[f[0], 0], corners[f[0], 1]),
                     (corners[f[2], 0], corners[f[2], 1]), color, 1, lineType=cv2.LINE_AA)
            cv2.line(image, (corners[f[1], 0], corners[f[1], 1]),
                     (corners[f[3], 0], corners[f[3], 1]), color, 1, lineType=cv2.LINE_AA)

    return image