param_init.py 2.9 KB
Newer Older
L
Liu Yi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Copy-paste from PaddleSeg
https://github.com/PaddlePaddle/PaddleSeg/blob/release/2.1/paddleseg/cvlibs/param_init.py
"""

import paddle.nn as nn


def constant_init(param, **kwargs):
    """
    Initialize the `param` with constants.

    Args:
        param (Tensor): Tensor that needs to be initialized.

    Examples:

        from paddleseg.cvlibs import param_init
        import paddle.nn as nn

        linear = nn.Linear(2, 4)
        param_init.constant_init(linear.weight, value=2.0)
        print(linear.weight.numpy())
        # result is [[2. 2. 2. 2.], [2. 2. 2. 2.]]

    """
    initializer = nn.initializer.Constant(**kwargs)
    initializer(param, param.block)


def normal_init(param, **kwargs):
    """
    Initialize the `param` with a Normal distribution.

    Args:
        param (Tensor): Tensor that needs to be initialized.

    Examples:

        from paddleseg.cvlibs import param_init
        import paddle.nn as nn

        linear = nn.Linear(2, 4)
        param_init.normal_init(linear.weight, loc=0.0, scale=1.0)

    """
    initializer = nn.initializer.Normal(**kwargs)
    initializer(param, param.block)


def kaiming_normal_init(param, **kwargs):
    """
    Initialize the input tensor with Kaiming Normal initialization.

    This function implements the `param` initialization from the paper
    `Delving Deep into Rectifiers: Surpassing Human-Level Performance on
    ImageNet Classification <https://arxiv.org/abs/1502.01852>`
    by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. This is a
    robust initialization method that particularly considers the rectifier
    nonlinearities. In case of Uniform distribution, the range is [-x, x], where
    .. math::
        x = \sqrt{\\frac{6.0}{fan\_in}}
    In case of Normal distribution, the mean is 0 and the standard deviation
    is
    .. math::
        \sqrt{\\frac{2.0}{fan\_in}}

    Args:
        param (Tensor): Tensor that needs to be initialized.

    Examples:

        from paddleseg.cvlibs import param_init
        import paddle.nn as nn

        linear = nn.Linear(2, 4)
        # uniform is used to decide whether to use uniform or normal distribution
        param_init.kaiming_normal_init(linear.weight)

    """
    initializer = nn.initializer.KaimingNormal(**kwargs)
    initializer(param, param.block)