infer.py 4.9 KB
Newer Older
L
Liu Yi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import argparse

import cv2
import paddle
from paddle.inference import Config
from paddle.inference import create_predictor
from smoke.utils.vis_utils import encode_box3d, draw_box_3d

def get_ratio(ori_img_size, output_size, down_ratio=(4, 4)):
    return np.array([[down_ratio[1] * ori_img_size[1] / output_size[1], 
                     down_ratio[0] * ori_img_size[0] / output_size[0]]], np.float32)

def get_img(img_path):
    img = cv2.imread(img_path)
    ori_img_size = img.shape
    img = cv2.resize(img, (960, 640))
    output_size = img.shape
    img = img/255.0
    img = np.subtract(img, np.array([0.485, 0.456, 0.406]))
    img = np.true_divide(img, np.array([0.229, 0.224, 0.225]))
    img = np.array(img, np.float32)
    img = img.transpose(2, 0, 1)
    img = img[None,:,:,:]

    return img, ori_img_size, output_size

def init_predictor(args):
    if args.model_dir is not "":
        config = Config(args.model_dir)
    else:
        config = Config(args.model_file, args.params_file)

    config.enable_memory_optim()
    if args.use_gpu:
        config.enable_use_gpu(1000, 0)
    else:
        # If not specific mkldnn, you can set the blas thread.
        # The thread num should not be greater than the number of cores in the CPU.
        config.set_cpu_math_library_num_threads(4)
        config.enable_mkldnn()

    predictor = create_predictor(config)
    return predictor


def run(predictor, img):
    # copy img data to input tensor
    input_names = predictor.get_input_names()
    for i, name in enumerate(input_names):
        input_tensor = predictor.get_input_handle(name)
        input_tensor.reshape(img[i].shape)
        input_tensor.copy_from_cpu(img[i].copy())

    # do the inference
    predictor.run()

    results = []
    # get out data from output tensor
    output_names = predictor.get_output_names()
    for i, name in enumerate(output_names):
        output_tensor = predictor.get_output_handle(name)
        output_data = output_tensor.copy_to_cpu()
        results.append(output_data)

    return results

def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--model_file",
        type=str,
        default="./inference.pdmodel",
        help="Model filename, Specify this when your model is a combined model."
    )
    parser.add_argument(
        "--params_file",
        type=str,
        default="./inference.pdiparams",
        help=
        "Parameter filename, Specify this when your model is a combined model."
    )
    parser.add_argument(
        "--model_dir",
        type=str,
        default="",
        help=
        "Model dir, If you load a non-combined model, specify the directory of the model."
    )
    parser.add_argument(
        '--input_path',
        dest='input_path',
        help='The image path',
        type=str,
        required=True)
    parser.add_argument(
        '--output_path',
        dest='output_path',
        help='The result path of image',
        type=str,
        required=True)
    parser.add_argument("--use_gpu",
                        type=int,
                        default=0,
                        help="Whether use gpu.")
    return parser.parse_args()
    
if __name__ == '__main__':
    args = parse_args()
    pred = init_predictor(args)
    K = np.array([[[2055.56, 0, 939.658], [0, 2055.56, 641.072], [0, 0, 1]]], np.float32)
    K_inverse = np.linalg.inv(K)

    img_path = args.input_path
    img, ori_img_size, output_size = get_img(img_path)
    ratio = get_ratio(ori_img_size, output_size)

    results = run(pred, [img, K_inverse, ratio])

    total_pred = paddle.to_tensor(results[0])

    keep_idx = paddle.nonzero(total_pred[:, -1] > 0.25)
    total_pred = paddle.gather(total_pred, keep_idx)

    if total_pred.shape[0] > 0:
        pred_dimensions = total_pred[:, 6:9]
        pred_dimensions = pred_dimensions.roll(shifts=1, axis=1)
        pred_rotys = total_pred[:, 12]
        pred_locations = total_pred[:, 9:12]
        bbox_3d = encode_box3d(pred_rotys, pred_dimensions, pred_locations, paddle.to_tensor(K), (1280, 1920))
    else:
        bbox_3d = total_pred
    
    
    img_draw = cv2.imread(img_path)
    for idx in range(bbox_3d.shape[0]):
        bbox = bbox_3d[idx]
        bbox = bbox.transpose([1,0]).numpy()
        img_draw = draw_box_3d(img_draw, bbox)
    
    cv2.imwrite(args.output_path, img_draw)