image_utils.py 7.8 KB
Newer Older
D
dengkaipeng 已提交
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
D
dengkaipeng 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import numpy as np
import cv2
from PIL import Image, ImageEnhance
import random

import box_utils


def random_distort(img):
    def random_brightness(img, lower=0.5, upper=1.5):
        e = np.random.uniform(lower, upper)
        return ImageEnhance.Brightness(img).enhance(e)
 
    def random_contrast(img, lower=0.5, upper=1.5):
        e = np.random.uniform(lower, upper)
        return ImageEnhance.Contrast(img).enhance(e)
 
    def random_color(img, lower=0.5, upper=1.5):
        e = np.random.uniform(lower, upper)
        return ImageEnhance.Color(img).enhance(e)
 
    ops = [random_brightness, random_contrast, random_color]
    np.random.shuffle(ops)
 
    img = Image.fromarray(img)
    img = ops[0](img)
    img = ops[1](img)
    img = ops[2](img)
    img = np.asarray(img)
 
    return img


D
dengkaipeng 已提交
54
def random_crop(img, boxes, labels, scores, scales=[0.3, 1.0], max_ratio=2.0, constraints=None, max_trial=50):
D
dengkaipeng 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67
    if len(boxes) == 0:
        return img, boxes

    if not constraints:
        constraints = [
                (0.1, 1.0),
                (0.3, 1.0),
                (0.5, 1.0),
                (0.7, 1.0),
                (0.9, 1.0),
                (0.0, 1.0)]

    img = Image.fromarray(img)
D
dengkaipeng 已提交
68
    w, h = img.size
D
dengkaipeng 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81
    crops = [(0, 0, w, h)]
    for min_iou, max_iou in constraints:
        for _ in range(max_trial):
            scale = random.uniform(scales[0], scales[1])
            aspect_ratio = random.uniform(max(1 / max_ratio, scale * scale), \
                                          min(max_ratio, 1 / scale / scale))
            crop_h = int(h * scale / np.sqrt(aspect_ratio))
            crop_w = int(w * scale * np.sqrt(aspect_ratio))
            crop_x = random.randrange(w - crop_w)
            crop_y = random.randrange(h - crop_h)
            crop_box = np.array([[
                (crop_x + crop_w / 2.0) / w,
                (crop_y + crop_h / 2.0) / h,
D
dengkaipeng 已提交
82 83
                crop_w / float(w),
                crop_h /float(h)
D
dengkaipeng 已提交
84 85 86 87 88 89 90 91 92
                ]])

            iou = box_utils.box_iou_xywh(crop_box, boxes)
            if min_iou <= iou.min() and max_iou >= iou.max():
                crops.append((crop_x, crop_y, crop_w, crop_h))
                break

    while crops:
        crop = crops.pop(np.random.randint(0, len(crops)))
D
dengkaipeng 已提交
93
        crop_boxes, crop_labels, crop_scores, box_num = box_utils.box_crop(boxes, labels, scores, crop, (w, h))
D
dengkaipeng 已提交
94 95 96 97
        if box_num < 1:
            continue
        img = img.crop((crop[0], crop[1], crop[0] + crop[2], crop[1] + crop[3])).resize(img.size, Image.LANCZOS)
        img = np.asarray(img)
D
dengkaipeng 已提交
98
        return img, crop_boxes, crop_labels, crop_scores
D
dengkaipeng 已提交
99
    img = np.asarray(img)
D
dengkaipeng 已提交
100
    return img, boxes, labels, scores
D
dengkaipeng 已提交
101 102 103 104 105 106 107

def random_flip(img, gtboxes, thresh=0.5):
    if random.random() > thresh:
        img = img[:, ::-1, :]
        gtboxes[:, 0] = 1.0 - gtboxes[:, 0]
    return img, gtboxes

D
dengkaipeng 已提交
108
def random_interp(img, size, interp=None):
D
dengkaipeng 已提交
109 110 111 112 113 114 115
    interp_method = [
        cv2.INTER_NEAREST,
        cv2.INTER_LINEAR,
        cv2.INTER_AREA,
        cv2.INTER_CUBIC,
        cv2.INTER_LANCZOS4,
        ]
D
dengkaipeng 已提交
116 117
    if not interp or interp not in interp_method:
        interp = interp_method[random.randint(0, len(interp_method) - 1)]
D
dengkaipeng 已提交
118 119 120 121 122 123
    h, w, _ = img.shape
    im_scale_x = size / float(w)
    im_scale_y = size / float(h)
    img = cv2.resize(img, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=interp)
    return img

124
def random_expand(img, gtboxes, max_ratio=4., fill=None, keep_ratio=True, thresh=0.5):
D
dengkaipeng 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    if random.random() > thresh:
        return img, gtboxes

    if max_ratio < 1.0:
        return img, gtboxes
    
    h, w, c = img.shape
    ratio_x = random.uniform(1, max_ratio)
    if keep_ratio:
        ratio_y = ratio_x
    else:
        ratio_y = random.uniform(1, max_ratio)
    oh = int(h * ratio_y)
    ow = int(w * ratio_x)
    off_x = random.randint(0, ow -w)
    off_y = random.randint(0, oh -h)

    out_img = np.zeros((oh, ow, c))
    if fill and len(fill) == c:
        for i in range(c):
            out_img[:, :, i] = fill[i] * 255.0

    out_img[off_y: off_y + h, off_x: off_x + w, :] = img
    gtboxes[:, 0] = ((gtboxes[:, 0] * w) + off_x) / float(ow)
    gtboxes[:, 1] = ((gtboxes[:, 1] * h) + off_y) / float(oh)
    gtboxes[:, 2] = gtboxes[:, 2] / ratio_x
    gtboxes[:, 3] = gtboxes[:, 3] / ratio_y

    return out_img.astype('uint8'), gtboxes

D
dengkaipeng 已提交
155 156
def shuffle_gtbox(gtbox, gtlabel, gtscore):
    gt = np.concatenate([gtbox, gtlabel[:, np.newaxis], gtscore[:, np.newaxis]], axis=1)
157
    idx = np.arange(gt.shape[0])
D
dengkaipeng 已提交
158 159 160 161
    np.random.shuffle(idx)
    gt = gt[idx, :]
    return gt[:, :4], gt[:, 4], gt[:, 5]

D
dengkaipeng 已提交
162
def image_mixup(img1, gtboxes1, gtlabels1, gtscores1, img2, gtboxes2, gtlabels2, gtscores2):
D
dengkaipeng 已提交
163 164 165 166 167 168
    factor = np.random.beta(1.5, 1.5)
    factor = max(0.0, min(1.0, factor))
    if factor >= 1.0:
        return img1, gtboxes1, gtlabels1
    if factor <= 0.0:
        return img2, gtboxes2, gtlabels2
D
dengkaipeng 已提交
169 170
    gtscores1 = gtscores1 * factor
    gtscores2 = gtscores2 * (1.0 - factor)
D
dengkaipeng 已提交
171 172 173 174 175 176 177 178

    h = max(img1.shape[0], img2.shape[0])
    w = max(img1.shape[1], img2.shape[1])
    img = np.zeros((h, w, img1.shape[2]), 'float32')
    img[:img1.shape[0], :img1.shape[1], :] = img1.astype('float32') * factor
    img[:img2.shape[0], :img2.shape[1], :] += img2.astype('float32') * (1.0 - factor)
    gtboxes = np.zeros_like(gtboxes1)
    gtlabels = np.zeros_like(gtlabels1)
D
dengkaipeng 已提交
179
    gtscores = np.zeros_like(gtscores1)
D
dengkaipeng 已提交
180 181 182 183

    gt_valid_mask1 = np.logical_and(gtboxes1[:, 2] > 0, gtboxes1[:, 3] > 0)
    gtboxes1 = gtboxes1[gt_valid_mask1]
    gtlabels1 = gtlabels1[gt_valid_mask1]
D
dengkaipeng 已提交
184
    gtscores1 = gtscores1[gt_valid_mask1]
D
dengkaipeng 已提交
185 186 187 188 189 190 191 192
    gtboxes1[:, 0] = gtboxes1[:, 0] * img1.shape[1] / w
    gtboxes1[:, 1] = gtboxes1[:, 1] * img1.shape[0] / h
    gtboxes1[:, 2] = gtboxes1[:, 2] * img1.shape[1] / w
    gtboxes1[:, 3] = gtboxes1[:, 3] * img1.shape[0] / h

    gt_valid_mask2 = np.logical_and(gtboxes2[:, 2] > 0, gtboxes2[:, 3] > 0)
    gtboxes2 = gtboxes2[gt_valid_mask2]
    gtlabels2 = gtlabels2[gt_valid_mask2]
D
dengkaipeng 已提交
193
    gtscores2 = gtscores2[gt_valid_mask2]
D
dengkaipeng 已提交
194 195 196 197
    gtboxes2[:, 0] = gtboxes2[:, 0] * img2.shape[1] / w
    gtboxes2[:, 1] = gtboxes2[:, 1] * img2.shape[0] / h
    gtboxes2[:, 2] = gtboxes2[:, 2] * img2.shape[1] / w
    gtboxes2[:, 3] = gtboxes2[:, 3] * img2.shape[0] / h
D
dengkaipeng 已提交
198

D
dengkaipeng 已提交
199 200
    gtboxes_all = np.concatenate((gtboxes1, gtboxes2), axis=0)
    gtlabels_all = np.concatenate((gtlabels1, gtlabels2), axis=0)
D
dengkaipeng 已提交
201
    gtscores_all = np.concatenate((gtscores1, gtscores2), axis=0)
D
dengkaipeng 已提交
202 203 204
    gt_num = min(len(gtboxes), len(gtboxes_all))
    gtboxes[:gt_num] = gtboxes_all[:gt_num]
    gtlabels[:gt_num] = gtlabels_all[:gt_num]
D
dengkaipeng 已提交
205 206
    gtscores[:gt_num] = gtscores_all[:gt_num]
    return img.astype('uint8'), gtboxes, gtlabels, gtscores
D
dengkaipeng 已提交
207

D
dengkaipeng 已提交
208
def image_augment(img, gtboxes, gtlabels, gtscores,  size, means=None):
D
dengkaipeng 已提交
209 210
    img = random_distort(img)
    img, gtboxes = random_expand(img, gtboxes, fill=means)
D
dengkaipeng 已提交
211
    img, gtboxes, gtlabels, gtscores = random_crop(img, gtboxes, gtlabels, gtscores)
D
dengkaipeng 已提交
212
    img = random_interp(img, size)
D
dengkaipeng 已提交
213
    img, gtboxes = random_flip(img, gtboxes)
D
dengkaipeng 已提交
214
    gtboxes, gtlabels, gtscores = shuffle_gtbox(gtboxes, gtlabels, gtscores)
D
dengkaipeng 已提交
215

D
dengkaipeng 已提交
216 217
    return img.astype('float32'), gtboxes.astype('float32'), \
            gtlabels.astype('int32'), gtscores.astype('float32')
D
dengkaipeng 已提交
218