train.py 16.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT pretraining in Paddle Dygraph Mode"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import six
import sys
if six.PY2:
    reload(sys)
    sys.setdefaultencoding('utf8')

import os
import time
import argparse
import numpy as np
import multiprocessing

import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph import to_variable

from reader.pretraining import DataReader
from model.bert import PretrainModelLayer, BertConfig
from optimization import Optimizer
from utils.args import ArgumentGroup, print_arguments, check_cuda
from utils.init import init_checkpoint, init_pretraining_params, init_from_static_model

# yapf: disable
parser = argparse.ArgumentParser(__doc__)
model_g = ArgumentGroup(parser, "model", "model configuration and paths.")
model_g.add_arg("bert_config_path",      str,  "./config/bert_config.json",  "Path to the json file for bert model config.")
model_g.add_arg("init_checkpoint",       str,  None,                         "Init checkpoint to resume training from.")
model_g.add_arg("checkpoints",           str,  "checkpoints",                "Path to save checkpoints.")
model_g.add_arg("weight_sharing",        bool, True,                         "If set, share weights between word embedding and masked lm.")
model_g.add_arg("generate_neg_sample",   bool, True,                         "If set, randomly generate negtive samples by positive samples.")

train_g = ArgumentGroup(parser, "training", "training options.")
train_g.add_arg("epoch",             int,    100,     "Number of epoches for training.")
train_g.add_arg("learning_rate",     float,  0.0001,  "Learning rate used to train with warmup.")
train_g.add_arg("lr_scheduler",      str,    "linear_warmup_decay",
                "scheduler of learning rate.", choices=['linear_warmup_decay', 'noam_decay'])
train_g.add_arg("weight_decay",      float,  0.01,    "Weight decay rate for L2 regularizer.")
train_g.add_arg("num_train_steps",   int,    1000000, "Total steps to perform pretraining.")
train_g.add_arg("warmup_steps",      int,    4000,    "Total steps to perform warmup when pretraining.")
train_g.add_arg("save_steps",        int,    10000,   "The steps interval to save checkpoints.")
train_g.add_arg("validation_steps",  int,    1000,    "The steps interval to evaluate model performance.")
train_g.add_arg("use_fp16",          bool,   False,   "Whether to use fp16 mixed precision training.")
train_g.add_arg("use_dynamic_loss_scaling",    bool,   True,   "Whether to use dynamic loss scaling in mixed precision training.")
train_g.add_arg("init_loss_scaling",           float,  2**32,
                "Loss scaling factor for mixed precision training, only valid when use_fp16 is enabled.")
train_g.add_arg("loss_scaling",      float,  1.0,
                "Loss scaling factor for mixed precision training, only valid when use_fp16 is enabled.")
train_g.add_arg("incr_every_n_steps",          int,    1000,   "Increases loss scaling every n consecutive.")
train_g.add_arg("decr_every_n_nan_or_inf",     int,    2,
                "Decreases loss scaling every n accumulated steps with nan or inf gradients.")
train_g.add_arg("incr_ratio",                  float,  2.0,
                "The multiplier to use when increasing the loss scaling.")
train_g.add_arg("decr_ratio",                  float,  0.8,
                "The less-than-one-multiplier to use when decreasing.")

log_g = ArgumentGroup(parser,     "logging", "logging related.")
log_g.add_arg("skip_steps",          int,    10,    "The steps interval to print loss.")
log_g.add_arg("verbose",             bool,   False, "Whether to output verbose log.")

data_g = ArgumentGroup(parser, "data", "Data paths, vocab paths and data processing options")
data_g.add_arg("data_dir",            str,  "./data/train/",       "Path to training data.")
data_g.add_arg("validation_set_dir",  str,  "./data/validation/",  "Path to validation data.")
data_g.add_arg("test_set_dir",        str,  None,                  "Path to test data.")
data_g.add_arg("vocab_path",          str,  "./config/vocab.txt",  "Vocabulary path.")
data_g.add_arg("max_seq_len",         int,  512,                   "Tokens' number of the longest seqence allowed.")
data_g.add_arg("batch_size",          int,  8192,
               "The total number of examples in one batch for training, see also --in_tokens.")
data_g.add_arg("in_tokens",           bool, True,
               "If set, the batch size will be the maximum number of tokens in one batch. "
               "Otherwise, it will be the maximum number of examples in one batch.")

run_type_g = ArgumentGroup(parser, "run_type", "running type options.")
run_type_g.add_arg("is_distributed",               bool,   False,  "If set, then start distributed training.")
run_type_g.add_arg("use_cuda",                     bool,   True,   "If set, use GPU for training.")
run_type_g.add_arg("use_fast_executor",            bool,   False,  "If set, use fast parallel executor (in experiment).")
run_type_g.add_arg("num_iteration_per_drop_scope", int,    1,      "Ihe iteration intervals to clean up temporary variables.")
run_type_g.add_arg("do_test",                      bool,   False,  "Whether to perform evaluation on test data set.")
run_type_g.add_arg("use_data_parallel",            bool,   False,  "The flag indicating whether to shuffle instances in each pass.")

args = parser.parse_args()
# yapf: enable.


def create_data(batch):
    """
    convert data to variable
    """
    src_ids = to_variable(batch[0], "src_ids")
    position_ids = to_variable(batch[1], "position_ids")
    sentence_ids = to_variable(batch[2], "sentence_ids")
    input_mask = to_variable(batch[3], "input_mask")
    mask_label = to_variable(batch[4], "mask_label")
    mask_pos = to_variable(batch[5], "mask_pos")
    labels = to_variable(batch[6], "labels")
    labels.stop_gradient = True
    return src_ids, position_ids, sentence_ids, input_mask, mask_label, mask_pos, labels


def predict_wrapper(pretrained_bert,
                    data_loader=None):
    cost = 0
    lm_cost = 0
    lm_acc = 0
    acc = 0
    steps = 0
    time_begin = time.time()
    try:
        for batch in data_loader():
            steps += 1
            (src_ids, pos_ids, sent_ids, input_mask, mask_label,
             mask_pos, labels) = create_data(batch)
            each_lm_acc, each_next_acc, each_mask_lm_cost, each_total_cost = pretrained_bert(
                src_ids, pos_ids, sent_ids, input_mask,
                mask_label, mask_pos, labels)
            lm_acc += each_lm_acc.numpy()
            acc += each_next_acc.numpy()
            lm_cost += each_mask_lm_cost.numpy()
            cost += each_total_cost.numpy()
    except fluid.core.EOFException:
        data_loader.reset()

    used_time = time.time() - time_begin
    return cost, lm_cost, lm_acc, acc, steps, (steps / used_time)


def train(args):
    print("pretraining start")
    bert_config = BertConfig(args.bert_config_path)
    bert_config.print_config()

    if args.use_cuda:
        place = fluid.CUDAPlace(fluid.dygraph.parallel.Env().dev_id)
        dev_count = fluid.core.get_cuda_device_count()
    else:
        place = fluid.CPUPlace()
        dev_count = int(os.environ.get("CPU_NUM", multiprocessing.cpu_count()))

    trainer_count = fluid.dygraph.parallel.Env().nranks

    data_reader = DataReader(
        data_dir=args.data_dir,
        batch_size=args.batch_size,
        in_tokens=args.in_tokens,
        vocab_path=args.vocab_path,
        voc_size=bert_config['vocab_size'],
        epoch=args.epoch,
        max_seq_len=args.max_seq_len,
        generate_neg_sample=args.generate_neg_sample)
    batch_generator = data_reader.data_generator()
    if args.validation_set_dir and args.validation_set_dir != "":
        val_data_reader = DataReader(
            data_dir=args.validation_set_dir,
            batch_size=args.batch_size,
            in_tokens=args.in_tokens,
            vocab_path=args.vocab_path,
            voc_size=bert_config['vocab_size'],
            shuffle_files=False,
            epoch=1,
            max_seq_len=args.max_seq_len,
            is_test=True)
        val_batch_generator = val_data_reader.data_generator()

    with fluid.dygraph.guard(place):
        if args.use_data_parallel:
            strategy = fluid.dygraph.parallel.prepare_context()

        # define data loader
        train_data_loader = fluid.io.DataLoader.from_generator(capacity=50)
        train_data_loader.set_batch_generator(batch_generator, places=place)
        if args.validation_set_dir and args.validation_set_dir != "":
            val_data_loader = fluid.io.DataLoader.from_generator(capacity=50)
            val_data_loader.set_batch_generator(val_batch_generator, places=place)

        # define model
        pretrained_bert = PretrainModelLayer(
            config=bert_config,
            return_pooled_out=True,
            weight_sharing=args.weight_sharing,
            use_fp16=args.use_fp16)

        optimizer = Optimizer(
            warmup_steps=args.warmup_steps,
            num_train_steps=args.num_train_steps,
            learning_rate=args.learning_rate,
            model_cls=pretrained_bert,
            weight_decay=args.weight_decay,
            scheduler=args.lr_scheduler,
            loss_scaling=args.loss_scaling,
            parameter_list=pretrained_bert.parameters())

        ## init from some checkpoint, to resume the previous training
        if args.init_checkpoint and args.init_checkpoint != "":
            model_dict, opt_dict = fluid.load_dygraph(
                os.path.join(args.init_checkpoint, "pretrained_bert"))
            pretrained_bert.load_dict(model_dict)
            optimizer.optimizer.set_dict(opt_dict)

        if args.use_data_parallel:
            pretrained_bert = fluid.dygraph.parallel.DataParallel(
                pretrained_bert, strategy)
            batch_generator = fluid.contrib.reader.distributed_batch_reader(
                batch_generator)

        steps = 0
        time_begin = time.time()
        time_begin_fixed = time_begin

        # train_loop
        while steps < args.num_train_steps:
            try:
                for batch in batch_generator():
                    steps += 1
                    (src_ids, pos_ids, sent_ids, input_mask, mask_label,
                        mask_pos, labels) = create_data(batch)

                    lm_acc, next_acc, mask_lm_cost, total_cost = pretrained_bert(
                        src_ids, pos_ids, sent_ids, input_mask,
                        mask_label, mask_pos, labels)

                    optimizer.optimization(total_cost, use_data_parallel=args.use_data_parallel, model=pretrained_bert)
                    pretrained_bert.clear_gradients()

                    time_end = time.time()
                    used_time = time_end - time_begin

                    epoch, current_file_index, total_file, current_file = data_reader.get_progress()
                    if steps % args.skip_steps == 0:
                        print("epoch: %d, progress: %d/%d, step: %d, loss: %f, "
                              "ppl: %f, lm_acc: %f, next_sent_acc: %f, speed: %f steps/s, file: %s"
                              % (epoch, current_file_index, total_file, steps,
                                 total_cost.numpy(),
                                 np.exp(mask_lm_cost.numpy()),
                                 lm_acc.numpy(),
                                 next_acc.numpy(), args.skip_steps / used_time,
                                 current_file))
                        time_begin = time.time()

                    if steps != 0 and steps % args.save_steps == 0 and fluid.dygraph.parallel.Env().local_rank == 0:
                        save_path = os.path.join(args.checkpoints, "step_" + str(steps))
                        if not os.path.exists(save_path):
                            os.makedirs(save_path)
                        fluid.save_dygraph(
                            pretrained_bert.state_dict(),
                            os.path.join(save_path, "pretrained_bert"))
                        fluid.save_dygraph(
                            optimizer.optimizer.state_dict(),
                            os.path.join(save_path, "pretrained_bert"))

                    if args.validation_set_dir and steps % args.validation_steps == 0:
                        pretrained_bert.eval()
                        vali_cost, vali_lm_cost, vali_lm_acc, vali_acc, vali_steps, vali_speed = predict_wrapper(pretrained_bert, val_data_loader)
                        print("[validation_set] epoch: %d, step: %d, "
                              "loss: %f, global ppl: %f, batch-averaged ppl: %f, "
                              "lm_acc: %f, next_sent_acc: %f, speed: %f steps/s" %
                              (epoch, steps,
                               np.mean(np.array(vali_cost) / vali_steps),
                               np.exp(np.mean(np.array(vali_lm_cost) / vali_steps)),
                               np.mean(np.exp(np.array(vali_lm_cost) / vali_steps)),
                               np.mean(np.array(vali_lm_acc) / vali_steps),
                               np.mean(np.array(vali_acc) / vali_steps), vali_speed))
                        pretrained_bert.train()

                if fluid.dygraph.parallel.Env().local_rank == 0:
                    save_path = os.path.join(args.checkpoints, "final")
                    fluid.save_dygraph(
                        pretrained_bert.state_dict(),
                        os.path.join(save_path, "pretrained_bert"))
                    fluid.save_dygraph(
                        optimizer.optimizer.state_dict(),
                        os.path.join(save_path, "pretrained_bert"))

            except fluid.core.EOFException:
                train_data_loader.reset()
                break


def test(args):
    bert_config = BertConfig(args.bert_config_path)
    bert_config.print_config()

    place = fluid.CUDAPlace(0) if args.use_cuda == True else fluid.CPUPlace()

    test_data_reader = DataReader(
        data_dir=args.test_set_dir,
        batch_size=args.batch_size,
        in_tokens=args.in_tokens,
        vocab_path=args.vocab_path,
        voc_size=bert_config['vocab_size'],
        shuffle_files=False,
        epoch=1,
        max_seq_len=args.max_seq_len,
        is_test=True)
    test_batch_generator = test_data_reader.data_generator()

    with fluid.dygraph.guard(place):
        # define data loader
        test_data_loader = fluid.io.DataLoader.from_generator(capacity=50)
        test_data_loader.set_batch_generator(test_batch_generator, places=place)

        # define model
        pretrained_bert = PretrainModelLayer(
            config=bert_config,
            return_pooled_out=True,
            weight_sharing=args.weight_sharing,
            use_fp16=args.use_fp16)

        # restore the model
        save_path = os.path.join(args.init_checkpoint, "pretrained_bert")
        print("Load params from %s" % save_path)
        model_dict, _ = fluid.load_dygraph(save_path)
        pretrained_bert.load_dict(model_dict)

        pretrained_bert.eval()

        cost, lm_cost, lm_acc, acc, steps, speed = predict_wrapper(pretrained_bert, test_data_loader)
        print("[test_set] loss: %f, global ppl: %f, lm_acc: %f, next_sent_acc: %f, speed: %f steps/s"
            % (np.mean(np.array(cost) / steps),
               np.exp(np.mean(np.array(lm_cost) / steps)),
               np.mean(np.array(lm_acc) / steps),
               np.mean(np.array(acc) / steps), speed))


if __name__ == '__main__':
    print_arguments(args)
    check_cuda(args.use_cuda)
    if args.do_test:
        test(args)
    else:
        train(args)