run.py 25.7 KB
Newer Older
X
xuezhong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import time
import os
import random
import json
X
xuezhong 已提交
24
import six
25
import multiprocessing
X
xuezhong 已提交
26 27 28 29 30 31 32 33 34 35 36 37

import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.framework as framework
from paddle.fluid.executor import Executor

import sys
if sys.version[0] == '2':
    reload(sys)
    sys.setdefaultencoding("utf-8")
sys.path.append('..')
Y
Yibing Liu 已提交
38 39
sys.path.append('../../models/reading_comprehension/')

X
xuezhong 已提交
40 41

from args import *
Y
Yibing Liu 已提交
42
import bidaf_model as rc_model
X
xuezhong 已提交
43 44 45 46 47
from dataset import BRCDataset
import logging
import pickle
from utils import normalize
from utils import compute_bleu_rouge
X
xuezhong 已提交
48
from vocab import Vocab
X
xuezhong 已提交
49

Q
qiuxuezhong 已提交
50

X
xuezhong 已提交
51 52
def prepare_batch_input(insts, args):
    batch_size = len(insts['raw_data'])
X
xuezhong 已提交
53 54 55 56
    inst_num = len(insts['passage_num'])
    if batch_size != inst_num:
        print("data error %d, %d" % (batch_size, inst_num))
        return None
X
xuezhong 已提交
57 58
    new_insts = []

X
xuezhong 已提交
59
    passage_idx = 0
X
xuezhong 已提交
60
    for i in range(batch_size):
X
xuezhong 已提交
61
        p_len = 0
X
xuezhong 已提交
62 63 64
        p_id = []
        p_ids = []
        q_ids = []
X
xuezhong 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77
        q_id = []
        p_id_r = []
        p_ids_r = []
        q_ids_r = []
        q_id_r = []

        for j in range(insts['passage_num'][i]):
            p_ids.append(insts['passage_token_ids'][passage_idx + j])
            p_id = p_id + insts['passage_token_ids'][passage_idx + j]
            q_ids.append(insts['question_token_ids'][passage_idx + j])
            q_id = q_id + insts['question_token_ids'][passage_idx + j]

        passage_idx += insts['passage_num'][i]
X
xuezhong 已提交
78 79 80 81 82 83 84 85 86 87
        p_len = len(p_id)

        def _get_label(idx, ref_len):
            ret = [0.0] * ref_len
            if idx >= 0 and idx < ref_len:
                ret[idx] = 1.0
            return [[x] for x in ret]

        start_label = _get_label(insts['start_id'][i], p_len)
        end_label = _get_label(insts['end_id'][i], p_len)
X
xuezhong 已提交
88
        new_inst = [q_ids, start_label, end_label, p_ids, q_id]
X
xuezhong 已提交
89 90 91 92
        new_insts.append(new_inst)
    return new_insts


X
xuezhong 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
def batch_reader(batch_list, args):
    res = []
    for batch in batch_list:
        res.append(prepare_batch_input(batch, args))
    return res


def read_multiple(reader, count, clip_last=True):
    """
    Stack data from reader for multi-devices.
    """

    def __impl__():
        res = []
        for item in reader():
            res.append(item)
            if len(res) == count:
                yield res
                res = []
        if len(res) == count:
            yield res
        elif not clip_last:
            data = []
            for item in res:
                data += item
            if len(data) > count:
                inst_num_per_part = len(data) // count
                yield [
                    data[inst_num_per_part * i:inst_num_per_part * (i + 1)]
                    for i in range(count)
                ]

    return __impl__


X
xuezhong 已提交
128 129 130 131 132 133 134 135 136 137
def LodTensor_Array(lod_tensor):
    lod = lod_tensor.lod()
    array = np.array(lod_tensor)
    new_array = []
    for i in range(len(lod[0]) - 1):
        new_array.append(array[lod[0][i]:lod[0][i + 1]])
    return new_array


def print_para(train_prog, train_exe, logger, args):
X
xuezhong 已提交
138
    """Print para info for debug purpose"""
X
xuezhong 已提交
139 140 141 142 143 144 145 146
    if args.para_print:
        param_list = train_prog.block(0).all_parameters()
        param_name_list = [p.name for p in param_list]
        num_sum = 0
        for p_name in param_name_list:
            p_array = np.array(train_exe.scope.find_var(p_name).get_tensor())
            param_num = np.prod(p_array.shape)
            num_sum = num_sum + param_num
Q
qiuxuezhong 已提交
147 148 149 150 151
            logger.info(
                "param: {0},  mean={1}  max={2}  min={3}  num={4} {5}".format(
                    p_name,
                    p_array.mean(),
                    p_array.max(), p_array.min(), p_array.shape, param_num))
X
xuezhong 已提交
152 153 154
        logger.info("total param num: {0}".format(num_sum))


X
xuezhong 已提交
155
def find_best_answer_for_passage(start_probs, end_probs, passage_len):
X
xuezhong 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
    """
    Finds the best answer with the maximum start_prob * end_prob from a single passage
    """
    if passage_len is None:
        passage_len = len(start_probs)
    else:
        passage_len = min(len(start_probs), passage_len)
    best_start, best_end, max_prob = -1, -1, 0
    for start_idx in range(passage_len):
        for ans_len in range(args.max_a_len):
            end_idx = start_idx + ans_len
            if end_idx >= passage_len:
                continue
            prob = start_probs[start_idx] * end_probs[end_idx]
            if prob > max_prob:
                best_start = start_idx
                best_end = end_idx
                max_prob = prob
    return (best_start, best_end), max_prob


X
xuezhong 已提交
177 178
def find_best_answer_for_inst(sample, start_prob, end_prob, inst_lod,
                              para_prior_scores=(0.44, 0.23, 0.15, 0.09, 0.07)):
X
xuezhong 已提交
179 180 181 182 183 184 185 186
    """
    Finds the best answer for a sample given start_prob and end_prob for each position.
    This will call find_best_answer_for_passage because there are multiple passages in a sample
    """
    best_p_idx, best_span, best_score = None, None, 0
    for p_idx, passage in enumerate(sample['passages']):
        if p_idx >= args.max_p_num:
            continue
X
xuezhong 已提交
187 188 189 190 191 192
        if len(start_prob) != len(end_prob):
            logger.info('error: {}'.format(sample['question']))
            continue
        passage_start = inst_lod[p_idx] - inst_lod[0]
        passage_end = inst_lod[p_idx + 1] - inst_lod[0]
        passage_len = passage_end - passage_start
X
xuezhong 已提交
193 194
        passage_len = min(args.max_p_len, len(passage['passage_tokens']))
        answer_span, score = find_best_answer_for_passage(
X
xuezhong 已提交
195 196
            start_prob[passage_start:passage_end],
            end_prob[passage_start:passage_end], passage_len)
X
xuezhong 已提交
197 198 199 200
        if para_prior_scores is not None:
            # the Nth prior score = the Number of training samples whose gold answer comes
            #  from the Nth paragraph / the number of the training samples
            score *= para_prior_scores[p_idx]
X
xuezhong 已提交
201 202 203 204 205 206 207 208 209
        if score > best_score:
            best_score = score
            best_p_idx = p_idx
            best_span = answer_span
    if best_p_idx is None or best_span is None:
        best_answer = ''
    else:
        best_answer = ''.join(sample['passages'][best_p_idx]['passage_tokens'][
            best_span[0]:best_span[1] + 1])
X
xuezhong 已提交
210
    return best_answer, best_span
X
xuezhong 已提交
211 212


X
xuezhong 已提交
213 214
def validation(inference_program, avg_cost, s_probs, e_probs, match, feed_order,
               place, dev_count, vocab, brc_data, logger, args):
X
xuezhong 已提交
215
    """
X
xuezhong 已提交
216
    do inference with given inference_program
X
xuezhong 已提交
217 218
    """
    parallel_executor = fluid.ParallelExecutor(
Q
qiuxuezhong 已提交
219 220
        main_program=inference_program,
        use_cuda=bool(args.use_gpu),
X
xuezhong 已提交
221
        loss_name=avg_cost.name)
Q
qiuxuezhong 已提交
222
    print_para(inference_program, parallel_executor, logger, args)
X
xuezhong 已提交
223 224 225 226

    # Use test set as validation each pass
    total_loss = 0.0
    count = 0
X
xuezhong 已提交
227 228
    n_batch_cnt = 0
    n_batch_loss = 0.0
X
xuezhong 已提交
229 230 231 232 233 234 235
    pred_answers, ref_answers = [], []
    val_feed_list = [
        inference_program.global_block().var(var_name)
        for var_name in feed_order
    ]
    val_feeder = fluid.DataFeeder(val_feed_list, place)
    pad_id = vocab.get_id(vocab.pad_token)
X
xuezhong 已提交
236 237
    dev_reader = lambda:brc_data.gen_mini_batches('dev', args.batch_size, pad_id, shuffle=False)
    dev_reader = read_multiple(dev_reader, dev_count)
X
xuezhong 已提交
238

X
xuezhong 已提交
239 240
    for batch_id, batch_list in enumerate(dev_reader(), 1):
        feed_data = batch_reader(batch_list, args)
X
xuezhong 已提交
241
        val_fetch_outs = parallel_executor.run(
X
xuezhong 已提交
242 243
            feed=list(val_feeder.feed_parallel(feed_data, dev_count)),
            fetch_list=[avg_cost.name, s_probs.name, e_probs.name, match.name],
Q
qiuxuezhong 已提交
244
            return_numpy=False)
X
xuezhong 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
        total_loss += np.array(val_fetch_outs[0]).sum()
        start_probs_m = LodTensor_Array(val_fetch_outs[1])
        end_probs_m = LodTensor_Array(val_fetch_outs[2])
        match_lod = val_fetch_outs[3].lod()
        count += len(np.array(val_fetch_outs[0]))

        n_batch_cnt += len(np.array(val_fetch_outs[0]))
        n_batch_loss += np.array(val_fetch_outs[0]).sum()
        log_every_n_batch = args.log_interval
        if log_every_n_batch > 0 and batch_id % log_every_n_batch == 0:
            logger.info('Average dev loss from batch {} to {} is {}'.format(
                batch_id - log_every_n_batch + 1, batch_id, "%.10f" % (
                    n_batch_loss / n_batch_cnt)))
            n_batch_loss = 0.0
            n_batch_cnt = 0
X
xuezhong 已提交
260
        batch_offset = 0
X
xuezhong 已提交
261 262 263
        for idx, batch in enumerate(batch_list):
            #one batch
            batch_size = len(batch['raw_data'])
X
xuezhong 已提交
264
            batch_range = match_lod[0][batch_offset:batch_offset + batch_size +
X
xuezhong 已提交
265 266 267
                                       1]
            batch_lod = [[batch_range[x], batch_range[x + 1]]
                         for x in range(len(batch_range[:-1]))]
X
xuezhong 已提交
268 269 270 271
            start_prob_batch = start_probs_m[batch_offset:batch_offset +
                                             batch_size + 1]
            end_prob_batch = end_probs_m[batch_offset:batch_offset + batch_size
                                         + 1]
X
xuezhong 已提交
272 273 274 275 276 277 278 279
            for sample, start_prob_inst, end_prob_inst, inst_range in zip(
                    batch['raw_data'], start_prob_batch, end_prob_batch,
                    batch_lod):
                #one instance
                inst_lod = match_lod[1][inst_range[0]:inst_range[1] + 1]
                best_answer, best_span = find_best_answer_for_inst(
                    sample, start_prob_inst, end_prob_inst, inst_lod)
                pred = {
X
xuezhong 已提交
280 281
                    'question_id': sample['question_id'],
                    'question_type': sample['question_type'],
X
xuezhong 已提交
282
                    'answers': [best_answer],
X
xuezhong 已提交
283
                    'entity_answers': [[]],
X
xuezhong 已提交
284
                    'yesno_answers': []
X
xuezhong 已提交
285 286 287 288 289 290 291 292 293 294 295
                }
                pred_answers.append(pred)
                if 'answers' in sample:
                    ref = {
                        'question_id': sample['question_id'],
                        'question_type': sample['question_type'],
                        'answers': sample['answers'],
                        'entity_answers': [[]],
                        'yesno_answers': []
                    }
                    ref_answers.append(ref)
X
xuezhong 已提交
296
            batch_offset = batch_offset + batch_size
X
xuezhong 已提交
297 298 299 300

    result_dir = args.result_dir
    result_prefix = args.result_name
    if result_dir is not None and result_prefix is not None:
X
xuezhong 已提交
301 302
        if not os.path.exists(args.result_dir):
            os.makedirs(args.result_dir)
X
xuezhong 已提交
303
        result_file = os.path.join(result_dir, result_prefix + '.json')
Q
qiuxuezhong 已提交
304 305 306
        with open(result_file, 'w') as fout:
            for pred_answer in pred_answers:
                fout.write(json.dumps(pred_answer, ensure_ascii=False) + '\n')
X
xuezhong 已提交
307
        logger.info('Saving {} results to {}'.format(result_prefix,
Q
qiuxuezhong 已提交
308
                                                     result_file))
X
xuezhong 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323

    ave_loss = 1.0 * total_loss / count
    # compute the bleu and rouge scores if reference answers is provided
    if len(ref_answers) > 0:
        pred_dict, ref_dict = {}, {}
        for pred, ref in zip(pred_answers, ref_answers):
            question_id = ref['question_id']
            if len(ref['answers']) > 0:
                pred_dict[question_id] = normalize(pred['answers'])
                ref_dict[question_id] = normalize(ref['answers'])
        bleu_rouge = compute_bleu_rouge(pred_dict, ref_dict)
    else:
        bleu_rouge = None
    return ave_loss, bleu_rouge

Q
qiuxuezhong 已提交
324

X
xuezhong 已提交
325 326 327 328 329 330 331 332 333
def l2_loss(train_prog):
    param_list = train_prog.block(0).all_parameters()
    para_sum = []
    for para in param_list:
        para_mul = fluid.layers.elementwise_mul(x=para, y=para, axis=0)
        para_sum.append(fluid.layers.reduce_sum(input=para_mul, dim=None))
    return fluid.layers.sums(para_sum) * 0.5


X
xuezhong 已提交
334
def train(logger, args):
X
xuezhong 已提交
335
    """train a model"""
X
xuezhong 已提交
336 337
    logger.info('Load data_set and vocab...')
    with open(os.path.join(args.vocab_dir, 'vocab.data'), 'rb') as fin:
X
xuezhong 已提交
338 339 340 341
        if six.PY2:
            vocab = pickle.load(fin)
        else:
            vocab = pickle.load(fin, encoding='bytes')
X
xuezhong 已提交
342 343 344 345 346 347 348 349
        logger.info('vocab size is {} and embed dim is {}'.format(vocab.size(
        ), vocab.embed_dim))
    brc_data = BRCDataset(args.max_p_num, args.max_p_len, args.max_q_len,
                          args.trainset, args.devset)
    logger.info('Converting text into ids...')
    brc_data.convert_to_ids(vocab)
    logger.info('Initialize the model...')

X
xuezhong 已提交
350 351 352 353 354 355 356
    if not args.use_gpu:
        place = fluid.CPUPlace()
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
    else:
        place = fluid.CUDAPlace(0)
        dev_count = fluid.core.get_cuda_device_count()

X
xuezhong 已提交
357 358 359
    # build model
    main_program = fluid.Program()
    startup_prog = fluid.Program()
X
xuezhong 已提交
360 361 362
    if args.enable_ce:
        main_program.random_seed = args.random_seed
        startup_prog.random_seed = args.random_seed
X
xuezhong 已提交
363 364
    with fluid.program_guard(main_program, startup_prog):
        with fluid.unique_name.guard():
X
xuezhong 已提交
365
            avg_cost, s_probs, e_probs, match, feed_order = rc_model.rc_model(
Q
qiuxuezhong 已提交
366
                args.hidden_size, vocab, args)
X
xuezhong 已提交
367 368 369
            # clone from default main program and use it as the validation program
            inference_program = main_program.clone(for_test=True)

Q
qiuxuezhong 已提交
370 371 372
            # build optimizer
            if args.optim == 'sgd':
                optimizer = fluid.optimizer.SGD(
X
xuezhong 已提交
373
                    learning_rate=args.learning_rate)
Q
qiuxuezhong 已提交
374 375
            elif args.optim == 'adam':
                optimizer = fluid.optimizer.Adam(
X
xuezhong 已提交
376
                    learning_rate=args.learning_rate)
Q
qiuxuezhong 已提交
377 378
            elif args.optim == 'rprop':
                optimizer = fluid.optimizer.RMSPropOptimizer(
X
xuezhong 已提交
379
                    learning_rate=args.learning_rate)
Q
qiuxuezhong 已提交
380 381 382
            else:
                logger.error('Unsupported optimizer: {}'.format(args.optim))
                exit(-1)
X
xuezhong 已提交
383
            if args.weight_decay > 0.0:
X
fix bug  
xuezhong 已提交
384 385 386 387 388
                obj_func = avg_cost + args.weight_decay * l2_loss(main_program)
                optimizer.minimize(obj_func)
            else:
                obj_func = avg_cost
                optimizer.minimize(obj_func)
Q
qiuxuezhong 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419

            # initialize parameters
            place = core.CUDAPlace(0) if args.use_gpu else core.CPUPlace()
            exe = Executor(place)
            if args.load_dir:
                logger.info('load from {}'.format(args.load_dir))
                fluid.io.load_persistables(
                    exe, args.load_dir, main_program=main_program)
            else:
                exe.run(startup_prog)
                embedding_para = fluid.global_scope().find_var(
                    'embedding_para').get_tensor()
                embedding_para.set(vocab.embeddings.astype(np.float32), place)

            # prepare data
            feed_list = [
                main_program.global_block().var(var_name)
                for var_name in feed_order
            ]
            feeder = fluid.DataFeeder(feed_list, place)

            logger.info('Training the model...')
            parallel_executor = fluid.ParallelExecutor(
                main_program=main_program,
                use_cuda=bool(args.use_gpu),
                loss_name=avg_cost.name)
            print_para(main_program, parallel_executor, logger, args)

            for pass_id in range(1, args.pass_num + 1):
                pass_start_time = time.time()
                pad_id = vocab.get_id(vocab.pad_token)
X
xuezhong 已提交
420 421 422 423
                if args.enable_ce:
                    train_reader = lambda:brc_data.gen_mini_batches('train', args.batch_size, pad_id, shuffle=False)
                else:
                    train_reader = lambda:brc_data.gen_mini_batches('train', args.batch_size, pad_id, shuffle=True)
X
xuezhong 已提交
424
                train_reader = read_multiple(train_reader, dev_count)
Q
qiuxuezhong 已提交
425 426
                log_every_n_batch, n_batch_loss = args.log_interval, 0
                total_num, total_loss = 0, 0
X
xuezhong 已提交
427 428
                for batch_id, batch_list in enumerate(train_reader(), 1):
                    feed_data = batch_reader(batch_list, args)
Q
qiuxuezhong 已提交
429
                    fetch_outs = parallel_executor.run(
X
xuezhong 已提交
430
                        feed=list(feeder.feed_parallel(feed_data, dev_count)),
X
fix bug  
xuezhong 已提交
431
                        fetch_list=[obj_func.name],
Q
qiuxuezhong 已提交
432
                        return_numpy=False)
X
xuezhong 已提交
433 434
                    cost_train = np.array(fetch_outs[0]).mean()
                    total_num += args.batch_size * dev_count
Q
qiuxuezhong 已提交
435
                    n_batch_loss += cost_train
X
xuezhong 已提交
436 437
                    total_loss += cost_train * args.batch_size * dev_count

X
add ce  
xuezhong 已提交
438 439
                    if args.enable_ce and batch_id >= 100:
                        break
Q
qiuxuezhong 已提交
440 441 442 443 444 445 446 447 448
                    if log_every_n_batch > 0 and batch_id % log_every_n_batch == 0:
                        print_para(main_program, parallel_executor, logger,
                                   args)
                        logger.info(
                            'Average loss from batch {} to {} is {}'.format(
                                batch_id - log_every_n_batch + 1, batch_id,
                                "%.10f" % (n_batch_loss / log_every_n_batch)))
                        n_batch_loss = 0
                    if args.dev_interval > 0 and batch_id % args.dev_interval == 0:
X
xuezhong 已提交
449 450 451 452 453 454 455
                        if brc_data.dev_set is not None:
                            eval_loss, bleu_rouge = validation(
                                inference_program, avg_cost, s_probs, e_probs,
                                match, feed_order, place, dev_count, vocab,
                                brc_data, logger, args)
                            logger.info('Dev eval result: {}'.format(
                                bleu_rouge))
Q
qiuxuezhong 已提交
456
                pass_end_time = time.time()
457 458 459
                time_consumed = pass_end_time - pass_start_time
                logger.info('epoch: {0}, epoch_time_cost: {1:.2f}'.format(
                    pass_id, time_consumed))
Q
qiuxuezhong 已提交
460 461 462 463
                logger.info('Evaluating the model after epoch {}'.format(
                    pass_id))
                if brc_data.dev_set is not None:
                    eval_loss, bleu_rouge = validation(
X
xuezhong 已提交
464 465 466
                        inference_program, avg_cost, s_probs, e_probs, match,
                        feed_order, place, dev_count, vocab, brc_data, logger,
                        args)
Q
qiuxuezhong 已提交
467 468 469 470
                    logger.info('Dev eval result: {}'.format(bleu_rouge))
                else:
                    logger.warning(
                        'No dev set is loaded for evaluation in the dataset!')
471

Q
qiuxuezhong 已提交
472 473 474 475 476 477 478 479 480 481 482 483
                logger.info('Average train loss for epoch {} is {}'.format(
                    pass_id, "%.10f" % (1.0 * total_loss / total_num)))

                if pass_id % args.save_interval == 0:
                    model_path = os.path.join(args.save_dir, str(pass_id))
                    if not os.path.isdir(model_path):
                        os.makedirs(model_path)

                    fluid.io.save_persistables(
                        executor=exe,
                        dirname=model_path,
                        main_program=main_program)
X
add ce  
xuezhong 已提交
484 485 486 487 488 489 490 491
                if args.enable_ce:  # For CE
                    print("kpis\ttrain_cost_card%d\t%f" %
                          (dev_count, total_loss / total_num))
                    if brc_data.dev_set is not None:
                        print("kpis\ttest_cost_card%d\t%f" %
                              (dev_count, eval_loss))
                    print("kpis\ttrain_duration_card%d\t%f" %
                          (dev_count, time_consumed))
Q
qiuxuezhong 已提交
492

X
xuezhong 已提交
493 494

def evaluate(logger, args):
X
xuezhong 已提交
495
    """evaluate a specific model using devset"""
X
xuezhong 已提交
496 497 498 499 500
    logger.info('Load data_set and vocab...')
    with open(os.path.join(args.vocab_dir, 'vocab.data'), 'rb') as fin:
        vocab = pickle.load(fin)
        logger.info('vocab size is {} and embed dim is {}'.format(vocab.size(
        ), vocab.embed_dim))
Q
qiuxuezhong 已提交
501 502
    brc_data = BRCDataset(
        args.max_p_num, args.max_p_len, args.max_q_len, dev_files=args.devset)
X
xuezhong 已提交
503 504 505 506 507 508 509 510 511
    logger.info('Converting text into ids...')
    brc_data.convert_to_ids(vocab)
    logger.info('Initialize the model...')

    # build model
    main_program = fluid.Program()
    startup_prog = fluid.Program()
    with fluid.program_guard(main_program, startup_prog):
        with fluid.unique_name.guard():
X
xuezhong 已提交
512
            avg_cost, s_probs, e_probs, match, feed_order = rc_model.rc_model(
Q
qiuxuezhong 已提交
513 514
                args.hidden_size, vocab, args)
            # initialize parameters
X
xuezhong 已提交
515 516 517 518 519 520 521 522
            if not args.use_gpu:
                place = fluid.CPUPlace()
                dev_count = int(
                    os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
            else:
                place = fluid.CUDAPlace(0)
                dev_count = fluid.core.get_cuda_device_count()

Q
qiuxuezhong 已提交
523 524 525 526 527 528 529 530 531
            exe = Executor(place)
            if args.load_dir:
                logger.info('load from {}'.format(args.load_dir))
                fluid.io.load_persistables(
                    exe, args.load_dir, main_program=main_program)
            else:
                logger.error('No model file to load ...')
                return

X
xuezhong 已提交
532
            inference_program = main_program.clone(for_test=True)
Q
qiuxuezhong 已提交
533
            eval_loss, bleu_rouge = validation(
X
xuezhong 已提交
534 535
                inference_program, avg_cost, s_probs, e_probs, match, feed_order,
                place, dev_count, vocab, brc_data, logger, args)
Q
qiuxuezhong 已提交
536 537 538 539 540
            logger.info('Dev eval result: {}'.format(bleu_rouge))
            logger.info('Predicted answers are saved to {}'.format(
                os.path.join(args.result_dir)))


X
xuezhong 已提交
541
def predict(logger, args):
X
xuezhong 已提交
542
    """do inference on the test dataset """
X
xuezhong 已提交
543 544 545 546 547
    logger.info('Load data_set and vocab...')
    with open(os.path.join(args.vocab_dir, 'vocab.data'), 'rb') as fin:
        vocab = pickle.load(fin)
        logger.info('vocab size is {} and embed dim is {}'.format(vocab.size(
        ), vocab.embed_dim))
Q
qiuxuezhong 已提交
548 549
    brc_data = BRCDataset(
        args.max_p_num, args.max_p_len, args.max_q_len, dev_files=args.testset)
X
xuezhong 已提交
550 551 552 553 554 555 556 557 558
    logger.info('Converting text into ids...')
    brc_data.convert_to_ids(vocab)
    logger.info('Initialize the model...')

    # build model
    main_program = fluid.Program()
    startup_prog = fluid.Program()
    with fluid.program_guard(main_program, startup_prog):
        with fluid.unique_name.guard():
X
xuezhong 已提交
559
            avg_cost, s_probs, e_probs, match, feed_order = rc_model.rc_model(
Q
qiuxuezhong 已提交
560 561
                args.hidden_size, vocab, args)
            # initialize parameters
X
xuezhong 已提交
562 563 564 565 566 567 568 569
            if not args.use_gpu:
                place = fluid.CPUPlace()
                dev_count = int(
                    os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
            else:
                place = fluid.CUDAPlace(0)
                dev_count = fluid.core.get_cuda_device_count()

Q
qiuxuezhong 已提交
570 571 572 573 574 575 576 577 578
            exe = Executor(place)
            if args.load_dir:
                logger.info('load from {}'.format(args.load_dir))
                fluid.io.load_persistables(
                    exe, args.load_dir, main_program=main_program)
            else:
                logger.error('No model file to load ...')
                return

X
xuezhong 已提交
579
            inference_program = main_program.clone(for_test=True)
Q
qiuxuezhong 已提交
580
            eval_loss, bleu_rouge = validation(
X
xuezhong 已提交
581 582
                inference_program, avg_cost, s_probs, e_probs, match,
                feed_order, place, dev_count, vocab, brc_data, logger, args)
Q
qiuxuezhong 已提交
583

X
xuezhong 已提交
584

X
xuezhong 已提交
585 586 587 588 589 590
def prepare(logger, args):
    """
    checks data, creates the directories, prepare the vocabulary and embeddings
    """
    logger.info('Checking the data files...')
    for data_path in args.trainset + args.devset + args.testset:
Q
qiuxuezhong 已提交
591 592
        assert os.path.exists(data_path), '{} file does not exist.'.format(
            data_path)
X
xuezhong 已提交
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
    logger.info('Preparing the directories...')
    for dir_path in [args.vocab_dir, args.save_dir, args.result_dir]:
        if not os.path.exists(dir_path):
            os.makedirs(dir_path)

    logger.info('Building vocabulary...')
    brc_data = BRCDataset(args.max_p_num, args.max_p_len, args.max_q_len,
                          args.trainset, args.devset, args.testset)
    vocab = Vocab(lower=True)
    for word in brc_data.word_iter('train'):
        vocab.add(word)

    unfiltered_vocab_size = vocab.size()
    vocab.filter_tokens_by_cnt(min_cnt=2)
    filtered_num = unfiltered_vocab_size - vocab.size()
Q
qiuxuezhong 已提交
608 609
    logger.info('After filter {} tokens, the final vocab size is {}'.format(
        filtered_num, vocab.size()))
X
xuezhong 已提交
610 611 612 613 614 615 616 617 618

    logger.info('Assigning embeddings...')
    vocab.randomly_init_embeddings(args.embed_size)

    logger.info('Saving vocab...')
    with open(os.path.join(args.vocab_dir, 'vocab.data'), 'wb') as fout:
        pickle.dump(vocab, fout)

    logger.info('Done with preparing!')
X
xuezhong 已提交
619

Q
qiuxuezhong 已提交
620

X
xuezhong 已提交
621 622 623
if __name__ == '__main__':
    args = parse_args()

X
xuezhong 已提交
624 625 626
    if args.enable_ce:
        random.seed(args.random_seed)
        np.random.seed(args.random_seed)
X
xuezhong 已提交
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643

    logger = logging.getLogger("brc")
    logger.setLevel(logging.INFO)
    formatter = logging.Formatter(
        '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    if args.log_path:
        file_handler = logging.FileHandler(args.log_path)
        file_handler.setLevel(logging.INFO)
        file_handler.setFormatter(formatter)
        logger.addHandler(file_handler)
    else:
        console_handler = logging.StreamHandler()
        console_handler.setLevel(logging.INFO)
        console_handler.setFormatter(formatter)
        logger.addHandler(console_handler)
    args = parse_args()
    logger.info('Running with args : {}'.format(args))
X
xuezhong 已提交
644 645
    if args.prepare:
        prepare(logger, args)
X
xuezhong 已提交
646 647 648 649 650 651
    if args.train:
        train(logger, args)
    if args.evaluate:
        evaluate(logger, args)
    if args.predict:
        predict(logger, args)