predict.py 5.6 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Load checkpoint of running classifier to do prediction and save inference model."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
import time
import numpy as np
import multiprocessing

import paddle
import paddle.fluid as fluid

from finetune_args import parser
from utils.args import print_arguments
from utils.init import init_pretraining_params, init_checkpoint

import define_predict_pack
import reader.data_reader as reader

_WORK_DIR = os.path.split(os.path.realpath(__file__))[0]
P
pkpk 已提交
37 38 39
sys.path.append(
    '../../models/dialogue_model_toolkit/dialogue_general_understanding')
sys.path.append('../../models/')
Y
Yibing Liu 已提交
40

P
pkpk 已提交
41
from bert import BertConfig, BertModel
Y
Yibing Liu 已提交
42
from create_model import create_model
P
pkpk 已提交
43 44 45
import define_paradigm

from model_check import check_cuda
Y
Yibing Liu 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61


def main(args):
    """main function"""
    bert_config = BertConfig(args.bert_config_path)
    bert_config.print_config()

    task_name = args.task_name.lower()
    paradigm_inst = define_paradigm.Paradigm(task_name)
    pred_inst = define_predict_pack.DefinePredict()
    pred_func = getattr(pred_inst, pred_inst.task_map[task_name])

    processors = {
        'udc': reader.UDCProcessor,
        'swda': reader.SWDAProcessor,
        'mrda': reader.MRDAProcessor,
P
pkpk 已提交
62
        'atis_slot': reader.ATISSlotProcessor,
Y
Yibing Liu 已提交
63
        'atis_intent': reader.ATISIntentProcessor,
P
pkpk 已提交
64 65
        'dstc2': reader.DSTC2Processor,
        'dstc2_asr': reader.DSTC2Processor,
Y
Yibing Liu 已提交
66 67 68 69 70 71 72 73
    }

    in_tokens = {
        'udc': True,
        'swda': True,
        'mrda': True,
        'atis_slot': False,
        'atis_intent': True,
P
pkpk 已提交
74 75
        'dstc2': True,
        'dstc2_asr': True
Y
Yibing Liu 已提交
76 77 78 79 80
    }

    processor = processors[task_name](data_dir=args.data_dir,
                                      vocab_path=args.vocab_path,
                                      max_seq_len=args.max_seq_len,
P
pkpk 已提交
81
                                      do_lower_case=args.do_lower_case,
Y
Yibing Liu 已提交
82
                                      in_tokens=in_tokens[task_name],
P
pkpk 已提交
83
                                      task_name=task_name,
Y
Yibing Liu 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
                                      random_seed=args.random_seed)
    num_labels = len(processor.get_labels())

    predict_prog = fluid.Program()
    predict_startup = fluid.Program()
    with fluid.program_guard(predict_prog, predict_startup):
        with fluid.unique_name.guard():
            pred_results = create_model(
                args,
                pyreader_name='predict_reader',
                bert_config=bert_config,
                num_labels=num_labels,
                paradigm_inst=paradigm_inst,
                is_prediction=True)
            predict_pyreader = pred_results.get('pyreader', None)
            probs = pred_results.get('probs', None)
            feed_target_names = pred_results.get('feed_target_names', None)

    predict_prog = predict_prog.clone(for_test=True)

    if args.use_cuda:
        place = fluid.CUDAPlace(0)
        dev_count = fluid.core.get_cuda_device_count()
    else:
        place = fluid.CPUPlace()
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))

    place = fluid.CUDAPlace(0) if args.use_cuda == True else fluid.CPUPlace()
    exe = fluid.Executor(place)
    exe.run(predict_startup)

    if args.init_checkpoint:
        init_pretraining_params(exe, args.init_checkpoint, predict_prog)
    else:
        raise ValueError("args 'init_checkpoint' should be set for prediction!")

    predict_exe = fluid.ParallelExecutor(
        use_cuda=args.use_cuda, main_program=predict_prog)

    test_data_generator = processor.data_generator(
P
pkpk 已提交
124
        batch_size=args.batch_size, phase='test', epoch=1, shuffle=False)
Y
Yibing Liu 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
    predict_pyreader.decorate_tensor_provider(test_data_generator)

    predict_pyreader.start()
    all_results = []
    time_begin = time.time()
    while True:
        try:
            results = predict_exe.run(fetch_list=[probs.name])
            all_results.extend(results[0])
        except fluid.core.EOFException:
            predict_pyreader.reset()
            break
    time_end = time.time()

    np.set_printoptions(precision=4, suppress=True)
    print("-------------- prediction results --------------")
    print("example_id\t" + '  '.join(processor.get_labels()))
P
pkpk 已提交
142 143
    if in_tokens[task_name]:
        for index, result in enumerate(all_results):
Y
Yibing Liu 已提交
144 145
            tags = pred_func(result)
            print("%s\t%s" % (index, tags))
P
pkpk 已提交
146
    else:
Y
Yibing Liu 已提交
147
        tags = pred_func(all_results, args.max_seq_len)
P
pkpk 已提交
148
        for index, tag in enumerate(tags):
Y
Yibing Liu 已提交
149
            print("%s\t%s" % (index, tag))
P
pkpk 已提交
150

Y
Yibing Liu 已提交
151 152 153 154 155 156 157 158 159 160 161
    if args.save_inference_model_path:
        _, ckpt_dir = os.path.split(args.init_checkpoint)
        dir_name = ckpt_dir + '_inference_model'
        model_path = os.path.join(args.save_inference_model_path, dir_name)
        fluid.io.save_inference_model(
            model_path,
            feed_target_names, [probs],
            exe,
            main_program=predict_prog)


P
pkpk 已提交
162
if __name__ == '__main__':
Y
Yibing Liu 已提交
163 164
    args = parser.parse_args()
    print_arguments(args)
P
pkpk 已提交
165 166 167

    check_cuda(args.use_cuda)

Y
Yibing Liu 已提交
168
    main(args)