introduction_cn.ipynb 2.2 KB
Notebook
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "22b0e4db",
   "metadata": {},
   "source": [
    "# ClinicalBERT - Bio + Clinical BERT Model\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f9d9ac37",
   "metadata": {},
   "source": [
    "The [Publicly Available Clinical BERT Embeddings](https://arxiv.org/abs/1904.03323) paper contains four unique clinicalBERT models: initialized with BERT-Base (`cased_L-12_H-768_A-12`) or BioBERT (`BioBERT-Base v1.0 + PubMed 200K + PMC 270K`) & trained on either all MIMIC notes or only discharge summaries.\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "24aaa0b1",
   "metadata": {},
   "source": [
    "This model card describes the Bio+Clinical BERT model, which was initialized from [BioBERT](https://arxiv.org/abs/1901.08746) & trained on all MIMIC notes.\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1449fef2",
   "metadata": {},
   "source": [
    "## How to use"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "be5241ea",
   "metadata": {},
   "outputs": [],
   "source": [
    "!pip install --upgrade paddlenlp"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f4c3cf6f",
   "metadata": {},
   "outputs": [],
   "source": [
    "import paddle\n",
53
    "from paddlenlp.transformers import BertForMaskedLM\n",
54
    "\n",
55
    "model = BertForMaskedLM.from_pretrained(\"emilyalsentzer/Bio_ClinicalBERT\")\n",
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
    "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
    "print(model(input_ids))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "451e4ff6",
   "metadata": {},
   "source": [
    "> 此模型介绍及权重来源于[https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT),并转换为飞桨模型格式。\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.13"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}