{ "cells": [ { "cell_type": "markdown", "id": "22b0e4db", "metadata": {}, "source": [ "# ClinicalBERT - Bio + Clinical BERT Model\n" ] }, { "cell_type": "markdown", "id": "f9d9ac37", "metadata": {}, "source": [ "The [Publicly Available Clinical BERT Embeddings](https://arxiv.org/abs/1904.03323) paper contains four unique clinicalBERT models: initialized with BERT-Base (`cased_L-12_H-768_A-12`) or BioBERT (`BioBERT-Base v1.0 + PubMed 200K + PMC 270K`) & trained on either all MIMIC notes or only discharge summaries.\n" ] }, { "cell_type": "markdown", "id": "24aaa0b1", "metadata": {}, "source": [ "This model card describes the Bio+Clinical BERT model, which was initialized from [BioBERT](https://arxiv.org/abs/1901.08746) & trained on all MIMIC notes.\n" ] }, { "cell_type": "markdown", "id": "1449fef2", "metadata": {}, "source": [ "## How to use" ] }, { "cell_type": "code", "execution_count": null, "id": "be5241ea", "metadata": {}, "outputs": [], "source": [ "!pip install --upgrade paddlenlp" ] }, { "cell_type": "code", "execution_count": null, "id": "f4c3cf6f", "metadata": {}, "outputs": [], "source": [ "import paddle\n", "from paddlenlp.transformers import BertForMaskedLM\n", "\n", "model = BertForMaskedLM.from_pretrained(\"emilyalsentzer/Bio_ClinicalBERT\")\n", "input_ids = paddle.randint(100, 200, shape=[1, 20])\n", "print(model(input_ids))" ] }, { "cell_type": "markdown", "id": "451e4ff6", "metadata": {}, "source": [ "> 此模型介绍及权重来源于[https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT),并转换为飞桨模型格式。\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.13" } }, "nbformat": 4, "nbformat_minor": 5 }