train.py 7.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time
import multiprocessing
import numpy as np
23 24
import datetime
from collections import deque
25

26 27 28 29 30 31 32 33 34 35 36 37 38 39

def set_paddle_flags(**kwargs):
    for key, value in kwargs.items():
        if os.environ.get(key, None) is None:
            os.environ[key] = str(value)


# NOTE(paddle-dev): All of these flags should be
# set before `import paddle`. Otherwise, it would
# not take any effect. 
set_paddle_flags(
    FLAGS_eager_delete_tensor_gb=0,  # enable GC to save memory
)

40 41 42 43 44 45 46
from paddle import fluid

from ppdet.core.workspace import load_config, merge_config, create
from ppdet.data.data_feed import create_reader

from ppdet.utils.eval_utils import parse_fetches, eval_run, eval_results
from ppdet.utils.stats import TrainingStats
Y
Yang Zhang 已提交
47
from ppdet.utils.cli import ArgsParser
48
from ppdet.utils.check import check_gpu
49
import ppdet.utils.checkpoint as checkpoint
50
from ppdet.modeling.model_input import create_feed
51 52 53 54 55 56 57 58

import logging
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)


def main():
Y
Yang Zhang 已提交
59
    cfg = load_config(FLAGS.config)
60
    if 'architecture' in cfg:
Y
Yang Zhang 已提交
61
        main_arch = cfg.architecture
62 63 64
    else:
        raise ValueError("'architecture' not specified in config file.")

Y
Yang Zhang 已提交
65
    merge_config(FLAGS.opt)
66 67
    if 'log_iter' not in cfg:
        cfg.log_iter = 20
68

69 70 71
    # check if set use_gpu=True in paddlepaddle cpu version
    check_gpu(cfg.use_gpu)

Y
Yang Zhang 已提交
72
    if cfg.use_gpu:
73 74
        devices_num = fluid.core.get_cuda_device_count()
    else:
75 76
        devices_num = int(
            os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
77 78

    if 'train_feed' not in cfg:
79
        train_feed = create(main_arch + 'TrainFeed')
80
    else:
Y
Yang Zhang 已提交
81
        train_feed = create(cfg.train_feed)
82

Y
Yang Zhang 已提交
83
    if FLAGS.eval:
84
        if 'eval_feed' not in cfg:
85
            eval_feed = create(main_arch + 'EvalFeed')
86
        else:
Y
Yang Zhang 已提交
87
            eval_feed = create(cfg.eval_feed)
88

Y
Yang Zhang 已提交
89
    place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace()
90 91 92 93 94
    exe = fluid.Executor(place)

    lr_builder = create('LearningRate')
    optim_builder = create('OptimizerBuilder')

95
    # build program
96 97 98 99
    startup_prog = fluid.Program()
    train_prog = fluid.Program()
    with fluid.program_guard(train_prog, startup_prog):
        with fluid.unique_name.guard():
100
            model = create(main_arch)
101
            train_pyreader, feed_vars = create_feed(train_feed)
102 103 104 105 106 107
            train_fetches = model.train(feed_vars)
            loss = train_fetches['loss']
            lr = lr_builder()
            optimizer = optim_builder(lr)
            optimizer.minimize(loss)

Y
Yang Zhang 已提交
108
    train_reader = create_reader(train_feed, cfg.max_iters * devices_num)
109 110 111 112 113 114
    train_pyreader.decorate_sample_list_generator(train_reader, place)

    # parse train fetches
    train_keys, train_values, _ = parse_fetches(train_fetches)
    train_values.append(lr)

Y
Yang Zhang 已提交
115
    if FLAGS.eval:
116 117 118
        eval_prog = fluid.Program()
        with fluid.program_guard(eval_prog, startup_prog):
            with fluid.unique_name.guard():
119
                model = create(main_arch)
120
                eval_pyreader, feed_vars = create_feed(eval_feed)
121
                fetches = model.eval(feed_vars)
122 123 124 125 126
        eval_prog = eval_prog.clone(True)

        eval_reader = create_reader(eval_feed)
        eval_pyreader.decorate_sample_list_generator(eval_reader, place)

127 128 129
        # parse eval fetches
        extra_keys = ['im_info', 'im_id',
                      'im_shape'] if cfg.metric == 'COCO' else []
130 131 132
        eval_keys, eval_values, eval_cls = parse_fetches(fetches, eval_prog,
                                                         extra_keys)

133
    # compile program for multi-devices
134 135
    build_strategy = fluid.BuildStrategy()
    build_strategy.memory_optimize = False
136
    build_strategy.enable_inplace = True
137
    sync_bn = getattr(model.backbone, 'norm_type', None) == 'sync_bn'
K
Kaipeng Deng 已提交
138 139
    # only enable sync_bn in multi GPU devices
    build_strategy.sync_batch_norm = sync_bn and devices_num > 1 \
140
         and cfg.use_gpu
141 142 143
    train_compile_program = fluid.compiler.CompiledProgram(
        train_prog).with_data_parallel(
            loss_name=loss.name, build_strategy=build_strategy)
Y
Yang Zhang 已提交
144
    if FLAGS.eval:
145 146 147 148
        eval_compile_program = fluid.compiler.CompiledProgram(eval_prog)

    exe.run(startup_prog)

149
    fuse_bn = getattr(model.backbone, 'norm_type', None) == 'affine_channel'
Q
qingqing01 已提交
150
    start_iter = 0
Y
Yang Zhang 已提交
151 152
    if FLAGS.resume_checkpoint:
        checkpoint.load_checkpoint(exe, train_prog, FLAGS.resume_checkpoint)
Q
qingqing01 已提交
153
        start_iter = checkpoint.global_step()
154
    elif cfg.pretrain_weights and fuse_bn:
Y
Yang Zhang 已提交
155 156 157 158
        checkpoint.load_and_fusebn(exe, train_prog, cfg.pretrain_weights)
    elif cfg.pretrain_weights:
        checkpoint.load_pretrain(exe, train_prog, cfg.pretrain_weights)

159 160 161 162 163 164
    # whether output bbox is normalized in model output layer
    is_bbox_normalized = False
    if hasattr(model, 'is_bbox_normalized') and \
            callable(model.is_bbox_normalized):
        is_bbox_normalized = model.is_bbox_normalized()

Y
Yang Zhang 已提交
165
    train_stats = TrainingStats(cfg.log_smooth_window, train_keys)
166 167 168 169
    train_pyreader.start()
    start_time = time.time()
    end_time = time.time()

Y
Yang Zhang 已提交
170 171
    cfg_name = os.path.basename(FLAGS.config).split('.')[0]
    save_dir = os.path.join(cfg.save_dir, cfg_name)
172
    time_stat = deque(maxlen=cfg.log_iter)
Q
qingqing01 已提交
173
    for it in range(start_iter, cfg.max_iters):
174 175
        start_time = end_time
        end_time = time.time()
176 177 178 179
        time_stat.append(end_time - start_time)
        time_cost = np.mean(time_stat)
        eta_sec = (cfg.max_iters - it) * time_cost
        eta = str(datetime.timedelta(seconds=int(eta_sec)))
180 181 182 183
        outs = exe.run(train_compile_program, fetch_list=train_values)
        stats = {k: np.array(v).mean() for k, v in zip(train_keys, outs[:-1])}
        train_stats.update(stats)
        logs = train_stats.log()
184 185 186 187
        if it % cfg.log_iter == 0:
            strs = 'iter: {}, lr: {:.6f}, {}, time: {:.3f}, eta: {}'.format(
                it, np.mean(outs[-1]), logs, time_cost, eta)
            logger.info(strs)
188

189 190 191
        if it > 0 and it % cfg.snapshot_iter == 0 or it == cfg.max_iters - 1:
            save_name = str(it) if it != cfg.max_iters - 1 else "model_final"
            checkpoint.save(exe, train_prog, os.path.join(save_dir, save_name))
192

Y
Yang Zhang 已提交
193
            if FLAGS.eval:
194
                # evaluation
195 196
                results = eval_run(exe, eval_compile_program, eval_pyreader,
                                   eval_keys, eval_values, eval_cls)
Y
Yang Zhang 已提交
197 198 199
                resolution = None
                if 'mask' in results[0]:
                    resolution = model.mask_head.resolution
200 201
                eval_results(results, eval_feed, cfg.metric, cfg.num_classes, 
                             resolution, is_bbox_normalized, FLAGS.output_file)
202 203 204 205 206

    train_pyreader.reset()


if __name__ == '__main__':
Y
Yang Zhang 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
    parser = ArgsParser()
    parser.add_argument(
        "-r",
        "--resume_checkpoint",
        default=None,
        type=str,
        help="Checkpoint path for resuming training.")
    parser.add_argument(
        "--eval",
        action='store_true',
        default=False,
        help="Whether to perform evaluation in train")
    parser.add_argument(
        "-f",
        "--output_file",
        default=None,
        type=str,
224
        help="Evaluation file name, default to bbox.json and mask.json.")
Y
Yang Zhang 已提交
225
    FLAGS = parser.parse_args()
226
    main()