reader.py 6.9 KB
Newer Older
X
xiaoting 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
D
Dun 已提交
17 18
import cv2
import numpy as np
19 20
import os
import six
21 22
import time
from data_utils import GeneratorEnqueuer
D
Dun 已提交
23 24 25 26

default_config = {
    "shuffle": True,
    "min_resize": 0.5,
27
    "max_resize": 4,
D
Dun 已提交
28 29 30
    "crop_size": 769,
}

u010070587's avatar
u010070587 已提交
31 32 33 34
# used for ce
if 'ce_mode' in os.environ:
    np.random.seed(0)

D
Dun 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

def slice_with_pad(a, s, value=0):
    pads = []
    slices = []
    for i in range(len(a.shape)):
        if i >= len(s):
            pads.append([0, 0])
            slices.append([0, a.shape[i]])
        else:
            l, r = s[i]
            if l < 0:
                pl = -l
                l = 0
            else:
                pl = 0
            if r > a.shape[i]:
                pr = r - a.shape[i]
                r = a.shape[i]
            else:
                pr = 0
            pads.append([pl, pr])
            slices.append([l, r])
57
    slices = list(map(lambda x: slice(x[0], x[1], 1), slices))
L
LielinJiang 已提交
58
    a = a[tuple(slices)]
D
Dun 已提交
59 60 61 62 63 64
    a = np.pad(a, pad_width=pads, mode='constant', constant_values=value)
    return a


class CityscapeDataset:
    def __init__(self, dataset_dir, subset='train', config=default_config):
65 66 67 68 69 70 71 72 73 74 75
        with open(os.path.join(dataset_dir, subset + '.list'), 'r') as fr:
            file_list = fr.readlines()
        all_images = []
        all_labels = []
        for i in range(len(file_list)):
            img_gt = file_list[i].strip().split(' ')
            all_images.append(os.path.join(dataset_dir, img_gt[0]))
            all_labels.append(os.path.join(dataset_dir, img_gt[1]))

        self.label_files = all_labels
        self.img_files = all_images
D
Dun 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
        self.index = 0
        self.subset = subset
        self.dataset_dir = dataset_dir
        self.config = config
        self.reset()

    def reset(self, shuffle=False):
        self.index = 0
        if self.config["shuffle"]:
            np.random.shuffle(self.label_files)

    def next_img(self):
        self.index += 1
        if self.index >= len(self.label_files):
            self.reset()

    def get_img(self):
        shape = self.config["crop_size"]
        while True:
            ln = self.label_files[self.index]
96
            img_name = self.img_files[self.index]
D
Dun 已提交
97 98 99
            label = cv2.imread(ln)
            img = cv2.imread(img_name)
            if img is None:
100
                print("load img failed:", img_name)
D
Dun 已提交
101 102 103 104 105
                self.next_img()
            else:
                break
        if shape == -1:
            return img, label, ln
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

        if np.random.rand() > 0.5:
            range_l = 1
            range_r = self.config['max_resize']
        else:
            range_l = self.config['min_resize']
            range_r = 1

        if np.random.rand() > 0.5:
            assert len(img.shape) == 3 and len(
                label.shape) == 3, "{} {}".format(img.shape, label.shape)
            img = img[:, :, ::-1]
            label = label[:, :, ::-1]

        random_scale = np.random.rand(1) * (range_r - range_l) + range_l
D
Dun 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
        crop_size = int(shape / random_scale)
        bb = crop_size // 2

        def _randint(low, high):
            return int(np.random.rand(1) * (high - low) + low)

        offset_x = np.random.randint(bb, max(bb + 1, img.shape[0] -
                                             bb)) - crop_size // 2
        offset_y = np.random.randint(bb, max(bb + 1, img.shape[1] -
                                             bb)) - crop_size // 2
        img_crop = slice_with_pad(img, [[offset_x, offset_x + crop_size],
                                        [offset_y, offset_y + crop_size]], 128)
        img = cv2.resize(img_crop, (shape, shape))
        label_crop = slice_with_pad(label, [[offset_x, offset_x + crop_size],
                                            [offset_y, offset_y + crop_size]],
                                    255)
        label = cv2.resize(
            label_crop, (shape, shape), interpolation=cv2.INTER_NEAREST)
        return img, label, ln + str(
            (offset_x, offset_y, crop_size, random_scale))

    def get_batch(self, batch_size=1):
        imgs = []
        labels = []
        names = []
        while len(imgs) < batch_size:
            img, label, ln = self.get_img()
            imgs.append(img)
            labels.append(label)
            names.append(ln)
            self.next_img()
        return np.array(imgs), np.array(labels), names

154 155 156 157 158 159
    def get_batch_generator(self,
                            batch_size,
                            total_step,
                            num_workers=8,
                            max_queue=32,
                            use_multiprocessing=True):
D
Dun 已提交
160
        def do_get_batch():
161 162
            iter_id = 0
            while True:
D
Dun 已提交
163 164 165 166
                imgs, labels, names = self.get_batch(batch_size)
                labels = labels.astype(np.int32)[:, :, :, 0]
                imgs = imgs[:, :, :, ::-1].transpose(
                    0, 3, 1, 2).astype(np.float32) / (255.0 / 2) - 1
167 168 169 170 171
                yield imgs, labels, names
                if not use_multiprocessing:
                    iter_id += 1
                    if iter_id >= total_step:
                        break
D
Dun 已提交
172 173

        batches = do_get_batch()
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
        if not use_multiprocessing:
            try:
                from prefetch_generator import BackgroundGenerator
                batches = BackgroundGenerator(batches, 100)
            except:
                print(
                    "You can install 'prefetch_generator' for acceleration of data reading."
                )
            return batches

        def reader():
            try:
                enqueuer = GeneratorEnqueuer(
                    batches, use_multiprocessing=use_multiprocessing)
                enqueuer.start(max_queue_size=max_queue, workers=num_workers)
                generator_out = None
                for i in range(total_step):
                    while enqueuer.is_running():
                        if not enqueuer.queue.empty():
                            generator_out = enqueuer.queue.get()
                            break
                        else:
                            time.sleep(0.02)
                    yield generator_out
                    generator_out = None
                enqueuer.stop()
            finally:
                if enqueuer is not None:
                    enqueuer.stop()

        data_gen = reader()
        return data_gen