reader.py 12.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import xml.etree.ElementTree
import os
import time
import copy
import six
import math
import numpy as np
from PIL import Image
from PIL import ImageDraw
import image_util
import paddle


class Settings(object):
    def __init__(self,
                 dataset=None,
                 data_dir=None,
                 label_file=None,
                 resize_h=300,
                 resize_w=300,
                 mean_value=[127.5, 127.5, 127.5],
                 apply_distort=True,
                 apply_expand=True,
                 ap_version='11point'):
        self._dataset = dataset
        self._ap_version = ap_version
        self._data_dir = data_dir
        if 'pascalvoc' in dataset:
            self._label_list = []
            label_fpath = os.path.join(data_dir, label_file)
            for line in open(label_fpath):
                self._label_list.append(line.strip())

        self._apply_distort = apply_distort
        self._apply_expand = apply_expand
        self._resize_height = resize_h
        self._resize_width = resize_w
        self._img_mean = np.array(mean_value)[:, np.newaxis, np.newaxis].astype(
            'float32')
        self._expand_prob = 0.5
        self._expand_max_ratio = 4
        self._hue_prob = 0.5
        self._hue_delta = 18
        self._contrast_prob = 0.5
        self._contrast_delta = 0.5
        self._saturation_prob = 0.5
        self._saturation_delta = 0.5
        self._brightness_prob = 0.5
        self._brightness_delta = 0.125

    @property
    def dataset(self):
        return self._dataset

    @property
    def ap_version(self):
        return self._ap_version

    @property
L
LielinJiang 已提交
74
    def apply_expand(self):
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
        return self._apply_expand

    @property
    def apply_distort(self):
        return self._apply_distort

    @property
    def data_dir(self):
        return self._data_dir

    @data_dir.setter
    def data_dir(self, data_dir):
        self._data_dir = data_dir

    @property
    def label_list(self):
        return self._label_list

    @property
    def resize_h(self):
        return self._resize_height

    @property
    def resize_w(self):
        return self._resize_width

    @property
    def img_mean(self):
        return self._img_mean


def preprocess(img, bbox_labels, mode, settings):
    img_width, img_height = img.size
    sampled_labels = bbox_labels
    if mode == 'train':
        if settings._apply_distort:
            img = image_util.distort_image(img, settings)
        if settings._apply_expand:
            img, bbox_labels, img_width, img_height = image_util.expand_image(
                img, bbox_labels, img_width, img_height, settings)
        # sampling
        batch_sampler = []
        # hard-code here
        batch_sampler.append(
            image_util.sampler(1, 1, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0))
        batch_sampler.append(
            image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.1, 0.0))
        batch_sampler.append(
            image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.3, 0.0))
        batch_sampler.append(
            image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.5, 0.0))
        batch_sampler.append(
            image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.7, 0.0))
        batch_sampler.append(
            image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.9, 0.0))
        batch_sampler.append(
            image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.0, 1.0))
        sampled_bbox = image_util.generate_batch_samples(batch_sampler,
                                                         bbox_labels)

        img = np.array(img)
        if len(sampled_bbox) > 0:
            idx = int(np.random.uniform(0, len(sampled_bbox)))
            img, sampled_labels = image_util.crop_image(
                img, bbox_labels, sampled_bbox[idx], img_width, img_height)

        img = Image.fromarray(img)
    img = img.resize((settings.resize_w, settings.resize_h), Image.ANTIALIAS)
    img = np.array(img)

    if mode == 'train':
        mirror = int(np.random.uniform(0, 2))
        if mirror == 1:
            img = img[:, ::-1, :]
            for i in six.moves.xrange(len(sampled_labels)):
                tmp = sampled_labels[i][1]
                sampled_labels[i][1] = 1 - sampled_labels[i][3]
                sampled_labels[i][3] = 1 - tmp
    # HWC to CHW
    if len(img.shape) == 3:
        img = np.swapaxes(img, 1, 2)
        img = np.swapaxes(img, 1, 0)
    # RBG to BGR
    img = img[[2, 1, 0], :, :]
    img = img.astype('float32')
    img -= settings.img_mean
    img = img * 0.007843
    return img, sampled_labels


def coco(settings, coco_api, file_list, mode, batch_size, shuffle, data_dir):
    from pycocotools.coco import COCO

    def reader():
        if mode == 'train' and shuffle:
            np.random.shuffle(file_list)
        batch_out = []
        for image in file_list:
            image_name = image['file_name']
            image_path = os.path.join(data_dir, image_name)
            if not os.path.exists(image_path):
                raise ValueError("%s is not exist, you should specify "
                                 "data path correctly." % image_path)
            im = Image.open(image_path)
            if im.mode == 'L':
                im = im.convert('RGB')
            im_width, im_height = im.size
            im_id = image['id']

            # layout: category_id | xmin | ymin | xmax | ymax | iscrowd
            bbox_labels = []
            annIds = coco_api.getAnnIds(imgIds=image['id'])
            anns = coco_api.loadAnns(annIds)
            for ann in anns:
                bbox_sample = []
                # start from 1, leave 0 to background
                bbox_sample.append(float(ann['category_id']))
                bbox = ann['bbox']
                xmin, ymin, w, h = bbox
                xmax = xmin + w
                ymax = ymin + h
                bbox_sample.append(float(xmin) / im_width)
                bbox_sample.append(float(ymin) / im_height)
                bbox_sample.append(float(xmax) / im_width)
                bbox_sample.append(float(ymax) / im_height)
                bbox_sample.append(float(ann['iscrowd']))
                bbox_labels.append(bbox_sample)
            im, sample_labels = preprocess(im, bbox_labels, mode, settings)
            sample_labels = np.array(sample_labels)
            if len(sample_labels) == 0: continue
            im = im.astype('float32')
            boxes = sample_labels[:, 1:5]
            lbls = sample_labels[:, 0].astype('int32')
            iscrowd = sample_labels[:, -1].astype('int32')
            if 'cocoMAP' in settings.ap_version:
                batch_out.append((im, boxes, lbls, iscrowd,
                                  [im_id, im_width, im_height]))
            else:
                batch_out.append((im, boxes, lbls, iscrowd))

            if len(batch_out) == batch_size:
                yield batch_out
                batch_out = []

        if mode == 'test' and len(batch_out) > 1:
            yield batch_out
            batch_out = []

    return reader


def pascalvoc(settings, file_list, mode, batch_size, shuffle):
    def reader():
        if mode == 'train' and shuffle:
            np.random.shuffle(file_list)
        batch_out = []
        cnt = 0
        for image in file_list:
            image_path, label_path = image.split()
            image_path = os.path.join(settings.data_dir, image_path)
            label_path = os.path.join(settings.data_dir, label_path)
            if not os.path.exists(image_path):
                raise ValueError("%s is not exist, you should specify "
                                 "data path correctly." % image_path)
            im = Image.open(image_path)
            if im.mode == 'L':
                im = im.convert('RGB')
            im_width, im_height = im.size

            # layout: label | xmin | ymin | xmax | ymax | difficult
            bbox_labels = []
            root = xml.etree.ElementTree.parse(label_path).getroot()
            for object in root.findall('object'):
                bbox_sample = []
                # start from 1
                bbox_sample.append(
                    float(settings.label_list.index(object.find('name').text)))
                bbox = object.find('bndbox')
                difficult = float(object.find('difficult').text)
                bbox_sample.append(float(bbox.find('xmin').text) / im_width)
                bbox_sample.append(float(bbox.find('ymin').text) / im_height)
                bbox_sample.append(float(bbox.find('xmax').text) / im_width)
                bbox_sample.append(float(bbox.find('ymax').text) / im_height)
                bbox_sample.append(difficult)
                bbox_labels.append(bbox_sample)
            im, sample_labels = preprocess(im, bbox_labels, mode, settings)
            sample_labels = np.array(sample_labels)
            if len(sample_labels) == 0: continue
            im = im.astype('float32')
            boxes = sample_labels[:, 1:5]
            lbls = sample_labels[:, 0].astype('int32')
            difficults = sample_labels[:, -1].astype('int32')

            batch_out.append((im, boxes, lbls, difficults))
            if len(batch_out) == batch_size:
                yield batch_out
                cnt += len(batch_out)
                batch_out = []

        if mode == 'test' and len(batch_out) > 1:
            yield batch_out
            cnt += len(batch_out)
            batch_out = []

    return reader


def train(settings,
          file_list,
          batch_size,
          shuffle=True,
          num_workers=8,
          enable_ce=False):
    file_path = os.path.join(settings.data_dir, file_list)
    readers = []
    if 'coco' in settings.dataset:
        # cocoapi
        from pycocotools.coco import COCO
        coco_api = COCO(file_path)
        image_ids = coco_api.getImgIds()
        images = coco_api.loadImgs(image_ids)
        np.random.shuffle(images)
        n = int(math.ceil(len(images) // num_workers))
        image_lists = [images[i:i + n] for i in range(0, len(images), n)]

        if '2014' in file_list:
            sub_dir = "train2014"
        elif '2017' in file_list:
            sub_dir = "train2017"
        data_dir = os.path.join(settings.data_dir, sub_dir)
        for l in image_lists:
            readers.append(
                coco(settings, coco_api, l, 'train', batch_size, shuffle,
                     data_dir))
    else:
        images = [line.strip() for line in open(file_path)]
        np.random.shuffle(images)
        n = int(math.ceil(len(images) // num_workers))
        image_lists = [images[i:i + n] for i in range(0, len(images), n)]
        for l in image_lists:
            readers.append(pascalvoc(settings, l, 'train', batch_size, shuffle))
    return paddle.reader.multiprocess_reader(readers, False)


def test(settings, file_list, batch_size):
    file_list = os.path.join(settings.data_dir, file_list)
    if 'coco' in settings.dataset:
        from pycocotools.coco import COCO
        coco_api = COCO(file_list)
        image_ids = coco_api.getImgIds()
        images = coco_api.loadImgs(image_ids)
        if '2014' in file_list:
            sub_dir = "val2014"
        elif '2017' in file_list:
            sub_dir = "val2017"
        data_dir = os.path.join(settings.data_dir, sub_dir)
        return coco(settings, coco_api, images, 'test', batch_size, False,
                    data_dir)
    else:
        image_list = [line.strip() for line in open(file_list)]
        return pascalvoc(settings, image_list, 'test', batch_size, False)


def infer(settings, image_path):
    def reader():
        if not os.path.exists(image_path):
            raise ValueError("%s is not exist, you should specify "
                             "data path correctly." % image_path)
        img = Image.open(image_path)
        if img.mode == 'L':
            img = img.convert('RGB')
        im_width, im_height = img.size
        img = img.resize((settings.resize_w, settings.resize_h),
                         Image.ANTIALIAS)
        img = np.array(img)
        # HWC to CHW
        if len(img.shape) == 3:
            img = np.swapaxes(img, 1, 2)
            img = np.swapaxes(img, 1, 0)
        # RBG to BGR
        img = img[[2, 1, 0], :, :]
        img = img.astype('float32')
        img -= settings.img_mean
        img = img * 0.007843
        return img

    return reader