voc_eval.py 6.5 KB
Newer Older
K
Kaipeng Deng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import os
import sys
import numpy as np

from ..data.source.voc_loader import pascalvoc_label
25
from .map_utils import DetectionMAP
K
Kaipeng Deng 已提交
26 27 28 29 30 31
from .coco_eval import bbox2out

import logging
logger = logging.getLogger(__name__)

__all__ = [
32
    'bbox_eval', 'bbox2out', 'get_category_info'
K
Kaipeng Deng 已提交
33 34 35
]


36 37
def bbox_eval(results,
              class_num,
38 39 40 41 42 43 44 45 46 47
              overlap_thresh=0.5,
              map_type='11point',
              is_bbox_normalized=False,
              evaluate_difficult=False):
    """
    Bounding box evaluation for VOC dataset

    Args:
        results (list): prediction bounding box results.
        class_num (int): evaluation class number.
48
        overlap_thresh (float): the postive threshold of
49 50 51 52 53
                        bbox overlap
        map_type (string): method for mAP calcualtion,
                        can only be '11point' or 'integral'
        is_bbox_normalized (bool): whether bbox is normalized
                        to range [0, 1].
54
        evaluate_difficult (bool): whether to evaluate
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
                        difficult gt bbox.
    """
    assert 'bbox' in results[0]
    logger.info("Start evaluate...")

    detection_map = DetectionMAP(class_num=class_num,
                        overlap_thresh=overlap_thresh,
                        map_type=map_type,
                        is_bbox_normalized=is_bbox_normalized,
                        evaluate_difficult=evaluate_difficult)

    for t in results:
        bboxes = t['bbox'][0]
        bbox_lengths = t['bbox'][1][0]

        if bboxes.shape == (1, 1) or bboxes is None:
            continue

        gt_boxes = t['gt_box'][0]
        gt_labels = t['gt_label'][0]
        difficults = t['is_difficult'][0] if not evaluate_difficult \
                            else None
77 78 79 80 81 82 83

        if len(t['gt_box'][1]) == 0:
            # gt_box, gt_label, difficult read as zero padded Tensor
            bbox_idx = 0
            for i in range(len(gt_boxes)):
                gt_box = gt_boxes[i]
                gt_label = gt_labels[i]
84 85
                difficult = None if difficults is None \
                                else difficults[i]
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
                bbox_num = bbox_lengths[i]
                bbox = bboxes[bbox_idx: bbox_idx + bbox_num]
                gt_box, gt_label, difficult = prune_zero_padding(
                                        gt_box, gt_label, difficult)
                detection_map.update(bbox, gt_box, gt_label, difficult)
                bbox_idx += bbox_num
        else:
            # gt_box, gt_label, difficult read as LoDTensor
            gt_box_lengths = t['gt_box'][1][0]
            bbox_idx = 0
            gt_box_idx = 0
            for i in range(len(bbox_lengths)):
                bbox_num = bbox_lengths[i]
                gt_box_num = gt_box_lengths[i]
                bbox = bboxes[bbox_idx: bbox_idx + bbox_num]
                gt_box = gt_boxes[gt_box_idx: gt_box_idx + gt_box_num]
                gt_label = gt_labels[gt_box_idx: gt_box_idx + gt_box_num]
                difficult = None if difficults is None else \
                            difficults[gt_box_idx: gt_box_idx + gt_box_num]
                detection_map.update(bbox, gt_box, gt_label, difficult)
                bbox_idx += bbox_num
                gt_box_idx += gt_box_num
108 109 110

    logger.info("Accumulating evaluatation results...")
    detection_map.accumulate()
111
    map_stat = 100. * detection_map.get_map()
112
    logger.info("mAP({:.2f}, {}) = {:.2f}".format(overlap_thresh,
113 114
                            map_type, map_stat))
    return map_stat
115 116


117 118 119 120 121 122 123 124 125 126 127
def prune_zero_padding(gt_box, gt_label, difficult=None):
    valid_cnt = 0
    for i in range(len(gt_box)):
        if gt_box[i, 0] == 0 and gt_box[i, 1] == 0 and \
                gt_box[i, 2] == 0 and gt_box[i, 3] == 0:
            break
        valid_cnt += 1
    return (gt_box[:valid_cnt], gt_label[:valid_cnt],
            difficult[:valid_cnt] if difficult is not None else None)


K
Kaipeng Deng 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
def get_category_info(anno_file=None,
                      with_background=True,
                      use_default_label=False):
    if use_default_label or anno_file is None \
            or not os.path.exists(anno_file):
        logger.info("Not found annotation file {}, load "
                    "voc2012 categories.".format(anno_file))
        return vocall_category_info(with_background)
    else:
        logger.info("Load categories from {}".format(anno_file))
        return get_category_info_from_anno(anno_file, with_background)


def get_category_info_from_anno(anno_file, with_background=True):
    """
    Get class id to category id map and category id
    to category name map from annotation file.

    Args:
        anno_file (str): annotation file path
        with_background (bool, default True):
            whether load background as class 0.
    """
    cats = []
    with open(anno_file) as f:
        for line in f.readlines():
            cats.append(line.strip())

    if cats[0] != 'background' and with_background:
        cats.insert(0, 'background')
    if cats[0] == 'background' and not with_background:
        cats = cats[1:]

    clsid2catid = {i: i for i in range(len(cats))}
    catid2name = {i: name for i, name in enumerate(cats)}

    return clsid2catid, catid2name


def vocall_category_info(with_background=True):
    """
    Get class id to category id map and category id
    to category name map of mixup voc dataset

    Args:
        with_background (bool, default True):
            whether load background as class 0.
    """
176
    label_map = pascalvoc_label(with_background)
K
Kaipeng Deng 已提交
177 178 179 180 181 182 183 184 185 186
    label_map = sorted(label_map.items(), key=lambda x: x[1])
    cats = [l[0] for l in label_map]

    if with_background:
        cats.insert(0, 'background')

    clsid2catid = {i: i for i in range(len(cats))}
    catid2name = {i: name for i, name in enumerate(cats)}

    return clsid2catid, catid2name