voc_eval.py 6.4 KB
Newer Older
K
Kaipeng Deng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import os
import sys
import numpy as np

from ..data.source.voc_loader import pascalvoc_label
25
from .map_utils import DetectionMAP
K
Kaipeng Deng 已提交
26 27 28 29 30 31
from .coco_eval import bbox2out

import logging
logger = logging.getLogger(__name__)

__all__ = [
32
    'bbox_eval', 'bbox2out', 'get_category_info'
K
Kaipeng Deng 已提交
33 34 35
]


36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
def bbox_eval(results, 
              class_num, 
              overlap_thresh=0.5,
              map_type='11point',
              is_bbox_normalized=False,
              evaluate_difficult=False):
    """
    Bounding box evaluation for VOC dataset

    Args:
        results (list): prediction bounding box results.
        class_num (int): evaluation class number.
        overlap_thresh (float): the postive threshold of 
                        bbox overlap
        map_type (string): method for mAP calcualtion,
                        can only be '11point' or 'integral'
        is_bbox_normalized (bool): whether bbox is normalized
                        to range [0, 1].
        evaluate_difficult (bool): whether to evaluate 
                        difficult gt bbox.
    """
    assert 'bbox' in results[0]
    logger.info("Start evaluate...")

    detection_map = DetectionMAP(class_num=class_num,
                        overlap_thresh=overlap_thresh,
                        map_type=map_type,
                        is_bbox_normalized=is_bbox_normalized,
                        evaluate_difficult=evaluate_difficult)

    for t in results:
        bboxes = t['bbox'][0]
        bbox_lengths = t['bbox'][1][0]

        if bboxes.shape == (1, 1) or bboxes is None:
            continue

        gt_boxes = t['gt_box'][0]
        gt_labels = t['gt_label'][0]
        difficults = t['is_difficult'][0] if not evaluate_difficult \
                            else None
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106

        if len(t['gt_box'][1]) == 0:
            # gt_box, gt_label, difficult read as zero padded Tensor
            bbox_idx = 0
            for i in range(len(gt_boxes)):
                gt_box = gt_boxes[i]
                gt_label = gt_labels[i]
                difficult = difficults[i]
                bbox_num = bbox_lengths[i]
                bbox = bboxes[bbox_idx: bbox_idx + bbox_num]
                gt_box, gt_label, difficult = prune_zero_padding(
                                        gt_box, gt_label, difficult)
                detection_map.update(bbox, gt_box, gt_label, difficult)
                bbox_idx += bbox_num
        else:
            # gt_box, gt_label, difficult read as LoDTensor
            gt_box_lengths = t['gt_box'][1][0]
            bbox_idx = 0
            gt_box_idx = 0
            for i in range(len(bbox_lengths)):
                bbox_num = bbox_lengths[i]
                gt_box_num = gt_box_lengths[i]
                bbox = bboxes[bbox_idx: bbox_idx + bbox_num]
                gt_box = gt_boxes[gt_box_idx: gt_box_idx + gt_box_num]
                gt_label = gt_labels[gt_box_idx: gt_box_idx + gt_box_num]
                difficult = None if difficults is None else \
                            difficults[gt_box_idx: gt_box_idx + gt_box_num]
                detection_map.update(bbox, gt_box, gt_label, difficult)
                bbox_idx += bbox_num
                gt_box_idx += gt_box_num
107 108 109 110 111 112 113

    logger.info("Accumulating evaluatation results...")
    detection_map.accumulate()
    logger.info("mAP({:.2f}, {}) = {:.2f}".format(overlap_thresh,
                            map_type, 100. * detection_map.get_map()))


114 115 116 117 118 119 120 121 122 123 124
def prune_zero_padding(gt_box, gt_label, difficult=None):
    valid_cnt = 0
    for i in range(len(gt_box)):
        if gt_box[i, 0] == 0 and gt_box[i, 1] == 0 and \
                gt_box[i, 2] == 0 and gt_box[i, 3] == 0:
            break
        valid_cnt += 1
    return (gt_box[:valid_cnt], gt_label[:valid_cnt],
            difficult[:valid_cnt] if difficult is not None else None)


K
Kaipeng Deng 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
def get_category_info(anno_file=None,
                      with_background=True,
                      use_default_label=False):
    if use_default_label or anno_file is None \
            or not os.path.exists(anno_file):
        logger.info("Not found annotation file {}, load "
                    "voc2012 categories.".format(anno_file))
        return vocall_category_info(with_background)
    else:
        logger.info("Load categories from {}".format(anno_file))
        return get_category_info_from_anno(anno_file, with_background)


def get_category_info_from_anno(anno_file, with_background=True):
    """
    Get class id to category id map and category id
    to category name map from annotation file.

    Args:
        anno_file (str): annotation file path
        with_background (bool, default True):
            whether load background as class 0.
    """
    cats = []
    with open(anno_file) as f:
        for line in f.readlines():
            cats.append(line.strip())

    if cats[0] != 'background' and with_background:
        cats.insert(0, 'background')
    if cats[0] == 'background' and not with_background:
        cats = cats[1:]

    clsid2catid = {i: i for i in range(len(cats))}
    catid2name = {i: name for i, name in enumerate(cats)}

    return clsid2catid, catid2name


def vocall_category_info(with_background=True):
    """
    Get class id to category id map and category id
    to category name map of mixup voc dataset

    Args:
        with_background (bool, default True):
            whether load background as class 0.
    """
173
    label_map = pascalvoc_label(with_background)
K
Kaipeng Deng 已提交
174 175 176 177 178 179 180 181 182 183
    label_map = sorted(label_map.items(), key=lambda x: x[1])
    cats = [l[0] for l in label_map]

    if with_background:
        cats.insert(0, 'background')

    clsid2catid = {i: i for i in range(len(cats))}
    catid2name = {i: name for i, name in enumerate(cats)}

    return clsid2catid, catid2name