mask_rcnn_r50_2x.yml 2.4 KB
Newer Older
1 2 3 4
architecture: MaskRCNN
train_feed: MaskRCNNTrainFeed
eval_feed: MaskRCNNEvalFeed
test_feed: MaskRCNNTestFeed
Y
Yang Zhang 已提交
5
use_gpu: true
6 7 8 9
max_iters: 360000
snapshot_iter: 10000
log_smooth_window: 20
save_dir: output
Y
Yang Zhang 已提交
10
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
11
metric: COCO
12
weights: output/mask_rcnn_r50_2x/model_final/
13
num_classes: 81
14 15 16 17 18 19 20 21 22 23 24 25 26

MaskRCNN:
  backbone: ResNet
  rpn_head: RPNHead
  roi_extractor: RoIAlign
  bbox_assigner: BBoxAssigner
  bbox_head: BBoxHead
  mask_assigner: MaskAssigner
  mask_head: MaskHead


ResNet:
  norm_type: affine_channel
27
  norm_decay: 0.
28
  depth: 50
29
  feature_maps: 4
30 31 32
  freeze_at: 2

ResNetC5:
33
  depth: 50
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
  norm_type: affine_channel

RPNHead:
  anchor_generator:
    anchor_sizes: [32, 64, 128, 256, 512]
    aspect_ratios: [0.5, 1.0, 2.0]
    stride: [16.0, 16.0]
    variance: [1.0, 1.0, 1.0, 1.0]
  rpn_target_assign:
    rpn_batch_size_per_im: 256
    rpn_fg_fraction: 0.5
    rpn_negative_overlap: 0.3
    rpn_positive_overlap: 0.7
    rpn_straddle_thresh: 0.0
  train_proposal:
    min_size: 0.0
    nms_thresh: 0.7
    pre_nms_top_n: 12000
    post_nms_top_n: 2000
  test_proposal:
    min_size: 0.0
    nms_thresh: 0.7
    pre_nms_top_n: 6000
    post_nms_top_n: 1000

RoIAlign:
  resolution: 14
  spatial_scale: 0.0625
  sampling_ratio: 0

BBoxHead:
  head: ResNetC5
  nms:
    keep_top_k: 100
    nms_threshold: 0.5
    normalized: false
    score_threshold: 0.05

MaskHead:
  dilation: 1
Y
Yuan Gao 已提交
74
  conv_dim: 256
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
  resolution: 14

BBoxAssigner:
  batch_size_per_im: 512
  bbox_reg_weights: [0.1, 0.1, 0.2, 0.2]
  bg_thresh_hi: 0.5
  bg_thresh_lo: 0.0
  fg_fraction: 0.25
  fg_thresh: 0.5

MaskAssigner:
  resolution: 14

LearningRate:
  base_lr: 0.01
  schedulers:
  - !PiecewiseDecay
    gamma: 0.1
    milestones: [240000, 320000]
  #start the warm up from base_lr * start_factor
  - !LinearWarmup
    start_factor: 0.3333333333333333
    steps: 500

OptimizerBuilder:
  optimizer:
    momentum: 0.9
    type: Momentum
  regularizer:
    factor: 0.0001
    type: L2

MaskRCNNTrainFeed:
  batch_size: 1
  dataset:
110
    dataset_dir: dataset/coco
111 112 113 114 115 116 117
    annotation: annotations/instances_train2017.json
    image_dir: train2017
  num_workers: 2

MaskRCNNEvalFeed:
  batch_size: 1
  dataset:
118
    dataset_dir: dataset/coco
119 120 121 122 123 124
    annotation: annotations/instances_val2017.json
    image_dir: val2017

MaskRCNNTestFeed:
  batch_size: 1
  dataset:
125
    annotation: dataset/coco/annotations/instances_val2017.json