StarGAN.py 15.0 KB
Newer Older
X
xiaoting 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Z
zhumanyu 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from network.StarGAN_network import StarGAN_model
from util import utility
import paddle.fluid as fluid
import sys
import time
import copy
import numpy as np
import pickle as pkl


class GTrainer():
    def __init__(self, image_real, label_org, label_trg, cfg, step_per_epoch):
        self.program = fluid.default_main_program().clone()
        with fluid.program_guard(self.program):
            model = StarGAN_model()
            self.fake_img = model.network_G(
                image_real, label_trg, cfg, name="g_main")
            self.fake_img.persistable = True
            self.rec_img = model.network_G(
                self.fake_img, label_org, cfg, name="g_main")
            self.rec_img.persistable = True
            self.infer_program = self.program.clone(for_test=False)
            self.g_loss_rec = fluid.layers.reduce_mean(
                fluid.layers.abs(
                    fluid.layers.elementwise_sub(
                        x=image_real, y=self.rec_img)))
            self.pred_fake, self.cls_fake = model.network_D(
                self.fake_img, cfg, name="d_main")
L
lvmengsi 已提交
45 46 47 48
            if cfg.gan_mode != 'wgan':
                raise NotImplementedError(
                    "gan_mode {} is not support! only support wgan".format(
                        cfg.gan_mode))
Z
zhumanyu 已提交
49
            #wgan
L
lvmengsi 已提交
50
            self.g_loss_fake = -1 * fluid.layers.mean(self.pred_fake)
Z
zhumanyu 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

            cls_shape = self.cls_fake.shape
            self.cls_fake = fluid.layers.reshape(
                self.cls_fake,
                [-1, cls_shape[1] * cls_shape[2] * cls_shape[3]])
            self.g_loss_cls = fluid.layers.reduce_sum(
                fluid.layers.sigmoid_cross_entropy_with_logits(
                    self.cls_fake, label_trg)) / cfg.batch_size
            self.g_loss = self.g_loss_fake + cfg.lambda_rec * self.g_loss_rec + self.g_loss_cls
            self.g_loss_fake.persistable = True
            self.g_loss_rec.persistable = True
            self.g_loss_cls.persistable = True
            lr = cfg.g_lr
            vars = []
            for var in self.program.list_vars():
                if fluid.io.is_parameter(var) and var.name.startswith("g_"):
                    vars.append(var.name)
            self.param = vars
            total_iters = step_per_epoch * cfg.epoch
            boundaries = [cfg.num_iters - cfg.num_iters_decay]
            values = [lr]
            for x in range(cfg.num_iters - cfg.num_iters_decay + 1,
                           total_iters):
                if x % cfg.lr_update_step == 0:
                    boundaries.append(x)
                    lr -= (lr / float(cfg.num_iters_decay))
                    values.append(lr)
            lr = values[-1]
            lr -= (lr / float(cfg.num_iters_decay))
            values.append(lr)
            optimizer = fluid.optimizer.Adam(
                learning_rate=fluid.layers.piecewise_decay(
                    boundaries=boundaries, values=values),
                beta1=0.5,
                beta2=0.999,
                name="net_G")
            optimizer.minimize(self.g_loss, parameter_list=vars)


class DTrainer():
    def __init__(self, image_real, label_org, label_trg, cfg, step_per_epoch):
        self.program = fluid.default_main_program().clone()
        with fluid.program_guard(self.program):
            model = StarGAN_model()
L
lvmengsi 已提交
95 96 97

            image_real = fluid.layers.data(
                name='image_real', shape=image_real.shape, dtype='float32')
Z
zhumanyu 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110
            self.fake_img = model.network_G(
                image_real, label_trg, cfg, name="g_main")
            self.pred_real, self.cls_real = model.network_D(
                image_real, cfg, name="d_main")
            self.pred_fake, _ = model.network_D(
                self.fake_img, cfg, name="d_main")
            cls_shape = self.cls_real.shape
            self.cls_real = fluid.layers.reshape(
                self.cls_real,
                [-1, cls_shape[1] * cls_shape[2] * cls_shape[3]])
            self.d_loss_cls = fluid.layers.reduce_sum(
                fluid.layers.sigmoid_cross_entropy_with_logits(
                    self.cls_real, label_org)) / cfg.batch_size
L
lvmengsi 已提交
111 112 113 114
            if cfg.gan_mode != 'wgan':
                raise NotImplementedError(
                    "gan_mode {} is not support! only support wgan".format(
                        cfg.gan_mode))
Z
zhumanyu 已提交
115
            #wgan
L
lvmengsi 已提交
116 117 118 119 120 121 122 123 124
            self.d_loss_fake = fluid.layers.mean(self.pred_fake)
            self.d_loss_real = -1 * fluid.layers.mean(self.pred_real)
            self.d_loss_gp = self.gradient_penalty(
                getattr(model, "network_D"),
                image_real,
                self.fake_img,
                cfg=cfg,
                name="d_main")
            self.d_loss = self.d_loss_real + self.d_loss_fake + self.d_loss_cls + cfg.lambda_gp * self.d_loss_gp
Z
zhumanyu 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162

            self.d_loss_real.persistable = True
            self.d_loss_fake.persistable = True
            self.d_loss_gp.persistable = True
            self.d_loss_cls.persistable = True
            vars = []
            for var in self.program.list_vars():
                if fluid.io.is_parameter(var) and var.name.startswith("d_"):
                    vars.append(var.name)

            self.param = vars
            total_iters = step_per_epoch * cfg.epoch
            boundaries = [cfg.num_iters - cfg.num_iters_decay]
            values = [cfg.d_lr]
            lr = cfg.d_lr
            for x in range(cfg.num_iters - cfg.num_iters_decay + 1,
                           total_iters):
                if x % cfg.lr_update_step == 0:
                    boundaries.append(x)
                    lr -= (lr / float(cfg.num_iters_decay))
                    values.append(lr)
            lr = values[-1]
            lr -= (lr / float(cfg.num_iters_decay))
            values.append(lr)
            optimizer = fluid.optimizer.Adam(
                learning_rate=fluid.layers.piecewise_decay(
                    boundaries=boundaries, values=values),
                beta1=0.5,
                beta2=0.999,
                name="net_D")

            optimizer.minimize(self.d_loss, parameter_list=vars)

    def gradient_penalty(self, f, real, fake, cfg=None, name=None):
        def _interpolate(a, b):
            shape = [a.shape[0]]
            alpha = fluid.layers.uniform_random_batch_size_like(
                input=a, shape=shape, min=0.0, max=1.0)
L
lvmengsi 已提交
163 164

            inner = b * (1.0 - alpha) + a * alpha
Z
zhumanyu 已提交
165 166 167 168 169 170 171 172 173 174
            return inner

        x = _interpolate(real, fake)
        pred, _ = f(x, cfg, name=name)
        if isinstance(pred, tuple):
            pred = pred[0]
        vars = []
        for var in fluid.default_main_program().list_vars():
            if fluid.io.is_parameter(var) and var.name.startswith('d_'):
                vars.append(var.name)
L
lvmengsi 已提交
175
        grad = fluid.gradients(pred, x, no_grad_set=vars)[0]
Z
zhumanyu 已提交
176 177 178
        grad_shape = grad.shape
        grad = fluid.layers.reshape(
            grad, [-1, grad_shape[1] * grad_shape[2] * grad_shape[3]])
L
lvmengsi 已提交
179
        epsilon = 1e-16
Z
zhumanyu 已提交
180 181
        norm = fluid.layers.sqrt(
            fluid.layers.reduce_sum(
L
lvmengsi 已提交
182
                fluid.layers.square(grad), dim=1) + epsilon)
Z
zhumanyu 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
        gp = fluid.layers.reduce_mean(fluid.layers.square(norm - 1.0))
        return gp


class StarGAN(object):
    def add_special_args(self, parser):
        parser.add_argument(
            '--g_lr', type=float, default=0.0001, help="learning rate of g")
        parser.add_argument(
            '--d_lr', type=float, default=0.0001, help="learning rate of d")
        parser.add_argument(
            '--c_dim',
            type=int,
            default=5,
            help="the number of attributes we selected")
        parser.add_argument(
            '--g_repeat_num',
            type=int,
            default=6,
            help="number of layers in generator")
        parser.add_argument(
            '--d_repeat_num',
            type=int,
            default=6,
            help="number of layers in discriminator")
        parser.add_argument(
            '--num_iters', type=int, default=200000, help="num iters")
        parser.add_argument(
            '--num_iters_decay',
            type=int,
            default=100000,
            help="num iters decay")
        parser.add_argument(
            '--lr_update_step',
            type=int,
            default=1000,
            help="iters when lr update ")
        parser.add_argument(
            '--lambda_cls',
            type=float,
            default=1.0,
            help="the coefficient of classification")
        parser.add_argument(
            '--lambda_rec',
            type=float,
            default=10.0,
            help="the coefficient of refactor")
        parser.add_argument(
            '--lambda_gp',
            type=float,
            default=10.0,
            help="the coefficient of gradient penalty")
        parser.add_argument(
            '--n_critic',
            type=int,
            default=5,
            help="discriminator training steps when generator update")
        parser.add_argument(
            '--selected_attrs',
            type=str,
            default="Black_Hair,Blond_Hair,Brown_Hair,Male,Young",
            help="the attributes we selected to change")
        parser.add_argument(
            '--n_samples', type=int, default=1, help="batch size when testing")

        return parser

    def __init__(self,
                 cfg=None,
                 train_reader=None,
                 test_reader=None,
L
lvmengsi 已提交
254 255
                 batch_num=1,
                 id2name=None):
Z
zhumanyu 已提交
256 257 258 259 260 261 262 263
        self.cfg = cfg
        self.train_reader = train_reader
        self.test_reader = test_reader
        self.batch_num = batch_num

    def build_model(self):
        data_shape = [-1, 3, self.cfg.image_size, self.cfg.image_size]

264
        image_real = fluid.layers.data(
Z
zhumanyu 已提交
265
            name='image_real', shape=data_shape, dtype='float32')
266 267 268 269
        label_org = fluid.layers.data(
            name='label_org', shape=[self.cfg.c_dim], dtype='float32')
        label_trg = fluid.layers.data(
            name='label_trg', shape=[self.cfg.c_dim], dtype='float32')
L
lvmengsi 已提交
270 271 272 273 274 275 276

        py_reader = fluid.io.PyReader(
            feed_list=[image_real, label_org, label_trg],
            capacity=128,
            iterable=True,
            use_double_buffer=True)

Z
zhumanyu 已提交
277 278 279 280 281 282 283
        gen_trainer = GTrainer(image_real, label_org, label_trg, self.cfg,
                               self.batch_num)
        dis_trainer = DTrainer(image_real, label_org, label_trg, self.cfg,
                               self.batch_num)

        # prepare environment
        place = fluid.CUDAPlace(0) if self.cfg.use_gpu else fluid.CPUPlace()
L
lvmengsi 已提交
284 285 286 287
        py_reader.decorate_batch_generator(
            self.train_reader,
            places=fluid.cuda_places()
            if self.cfg.use_gpu else fluid.cpu_places())
Z
zhumanyu 已提交
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())

        if self.cfg.init_model:
            utility.init_checkpoints(self.cfg, exe, gen_trainer, "net_G")
            utility.init_checkpoints(self.cfg, exe, dis_trainer, "net_D")

        ### memory optim
        build_strategy = fluid.BuildStrategy()

        gen_trainer_program = fluid.CompiledProgram(
            gen_trainer.program).with_data_parallel(
                loss_name=gen_trainer.g_loss.name,
                build_strategy=build_strategy)
        dis_trainer_program = fluid.CompiledProgram(
            dis_trainer.program).with_data_parallel(
                loss_name=dis_trainer.d_loss.name,
                build_strategy=build_strategy)

        t_time = 0

        for epoch_id in range(self.cfg.epoch):
            batch_id = 0
L
lvmengsi 已提交
311
            for data in py_reader():
Z
zhumanyu 已提交
312 313 314 315 316 317 318 319
                s_time = time.time()
                d_loss_real, d_loss_fake, d_loss, d_loss_cls, d_loss_gp = exe.run(
                    dis_trainer_program,
                    fetch_list=[
                        dis_trainer.d_loss_real, dis_trainer.d_loss_fake,
                        dis_trainer.d_loss, dis_trainer.d_loss_cls,
                        dis_trainer.d_loss_gp
                    ],
L
lvmengsi 已提交
320
                    feed=data)
Z
zhumanyu 已提交
321 322 323 324 325 326 327 328 329
                # optimize the generator network
                if (batch_id + 1) % self.cfg.n_critic == 0:
                    g_loss_fake, g_loss_rec, g_loss_cls, fake_img, rec_img = exe.run(
                        gen_trainer_program,
                        fetch_list=[
                            gen_trainer.g_loss_fake, gen_trainer.g_loss_rec,
                            gen_trainer.g_loss_cls, gen_trainer.fake_img,
                            gen_trainer.rec_img
                        ],
L
lvmengsi 已提交
330
                        feed=data)
Z
zhumanyu 已提交
331 332 333 334 335 336 337
                    print("epoch{}: batch{}: \n\
                         g_loss_fake: {}; g_loss_rec: {}; g_loss_cls: {}"
                          .format(epoch_id, batch_id, g_loss_fake[0],
                                  g_loss_rec[0], g_loss_cls[0]))

                batch_time = time.time() - s_time
                t_time += batch_time
L
lvmengsi 已提交
338
                if (batch_id + 1) % self.cfg.print_freq == 0:
Z
zhumanyu 已提交
339 340
                    print("epoch{}: batch{}: \n\
                         d_loss_real: {}; d_loss_fake: {}; d_loss_cls: {}; d_loss_gp: {} \n\
341
                         Batch_time_cost: {}".format(
Z
zhumanyu 已提交
342 343 344 345 346 347 348
                        epoch_id, batch_id, d_loss_real[0], d_loss_fake[
                            0], d_loss_cls[0], d_loss_gp[0], batch_time))

                sys.stdout.flush()
                batch_id += 1

            if self.cfg.run_test:
349
                image_name = fluid.layers.data(
L
lvmengsi 已提交
350
                    name='image_name',
351
                    shape=[self.cfg.n_samples],
L
lvmengsi 已提交
352 353 354 355 356 357 358
                    dtype='int32')
                test_py_reader = fluid.io.PyReader(
                    feed_list=[image_real, label_org, label_trg, image_name],
                    capacity=32,
                    iterable=True,
                    use_double_buffer=True)
                test_py_reader.decorate_batch_generator(
L
lvmengsi 已提交
359 360 361
                    self.test_reader,
                    places=fluid.cuda_places()
                    if self.cfg.use_gpu else fluid.cpu_places())
Z
zhumanyu 已提交
362 363 364
                test_program = gen_trainer.infer_program
                utility.save_test_image(epoch_id, self.cfg, exe, place,
                                        test_program, gen_trainer,
L
lvmengsi 已提交
365
                                        test_py_reader)
Z
zhumanyu 已提交
366 367 368 369 370 371

            if self.cfg.save_checkpoints:
                utility.checkpoints(epoch_id, self.cfg, exe, gen_trainer,
                                    "net_G")
                utility.checkpoints(epoch_id, self.cfg, exe, dis_trainer,
                                    "net_D")