generator.py 6.7 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
#!/usr/bin/env python
# -*- coding: utf-8 -*-
################################################################################
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################

import numpy as np

import paddle.fluid as fluid
import mmpms.layers as layers


def state_assign(new_state, old_state):
    if isinstance(new_state, dict):
        for k in new_state.keys():
            state_assign(new_state[k], old_state[k])
    elif isinstance(new_state, (tuple, list)):
        assert len(new_state) == len(old_state)
        for new_s, old_s in zip(new_state, old_state):
            state_assign(new_s, old_s)
    else:
        layers.assign(new_state, old_state)


def state_sequence_expand(state, y):
    if isinstance(state, dict):
        return {k: state_sequence_expand(v, y) for k, v in state.items()}
    elif isinstance(state, (tuple, list)):
        return type(state)(state_sequence_expand(s, y) for s in state)
    else:
        if state.dtype != y.dtype:
            return layers.sequence_expand(state, layers.cast(y, state.dtype))
        else:
            return layers.sequence_expand(state, y)


class BeamSearch(object):
    def __init__(self,
                 vocab_size,
                 beam_size,
                 start_id,
                 end_id,
                 unk_id,
                 min_length=1,
                 max_length=30,
                 length_average=False,
                 ignore_unk=False,
                 ignore_repeat=False):
        self.vocab_size = vocab_size
        self.beam_size = beam_size
        self.start_id = start_id
        self.end_id = end_id
        self.unk_id = unk_id
        self.min_length = min_length
        self.max_length = max_length
        self.length_average = length_average
        self.ignore_unk = ignore_unk
        self.ignore_repeat = ignore_repeat

    def __call__(self, step_fn, state, init_ids):

        init_scores = layers.fill_constant_batch_size_like(
            input=init_ids, shape=[-1, 1], dtype="float32", value=0)
        init_scores = layers.lod_reset(init_scores, init_ids)

        unk_scores = np.zeros(self.vocab_size, dtype="float32")
        unk_scores[self.unk_id] = -1e9
        unk_scores = layers.assign(unk_scores)

        end_scores = np.zeros(self.vocab_size, dtype="float32")
        end_scores[self.end_id] = -1e9
        end_scores = layers.assign(end_scores)

        array_len = layers.fill_constant(
            shape=[1], dtype="int64", value=self.max_length)
        min_array_len = layers.fill_constant(
            shape=[1], dtype="int64", value=self.min_length)
        counter = layers.zeros(shape=[1], dtype="int64", force_cpu=True)

        # ids, scores as memory
        ids_array = layers.create_array("int64")
        scores_array = layers.create_array("float32")

        layers.array_write(init_ids, array=ids_array, i=counter)
        layers.array_write(init_scores, array=scores_array, i=counter)

        cond = layers.less_than(x=counter, y=array_len)
        while_op = layers.While(cond=cond)

        with while_op.block():
            pre_ids = layers.array_read(array=ids_array, i=counter)
            pre_score = layers.array_read(array=scores_array, i=counter)

            # use step_fn to update state and get score
            score, new_state = step_fn(pre_ids, state)
            score = layers.log(score)

            if self.ignore_unk:
                score = score + unk_scores

            if self.ignore_repeat:
                repeat_scores = layers.cast(
                    layers.one_hot(pre_ids, self.vocab_size), "float32") * -1e9
                score = score + repeat_scores

            min_cond = layers.less_than(x=counter, y=min_array_len)
            with fluid.layers.control_flow.Switch() as switch:
                with switch.case(min_cond):
                    layers.assign(score + end_scores, score)

            score = layers.lod_reset(x=score, y=pre_score)

            topk_scores, topk_indices = layers.topk(score, k=self.beam_size)
            if self.length_average:
                pre_num = layers.cast(counter, "float32")
                cur_num = layers.increment(pre_num, value=1.0, in_place=False)
                accu_scores = layers.elementwise_add(
                    x=layers.elementwise_div(topk_scores, cur_num),
                    y=layers.elementwise_div(
                        layers.elementwise_mul(
                            layers.reshape(
                                pre_score, shape=[-1]), pre_num),
                        cur_num),
                    axis=0)
            else:
                accu_scores = layers.elementwise_add(
                    x=topk_scores,
                    y=layers.reshape(
                        pre_score, shape=[-1]),
                    axis=0)

            selected_ids, selected_scores, parent_idx = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_score,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=self.beam_size,
                end_id=self.end_id,
                return_parent_idx=True)

            layers.increment(x=counter, value=1, in_place=True)

            # update the memories
            layers.array_write(selected_ids, array=ids_array, i=counter)
            layers.array_write(selected_scores, array=scores_array, i=counter)
            state_assign(new_state, state)

            length_cond = layers.less_than(x=counter, y=array_len)
            not_finish_cond = layers.logical_not(
                layers.is_empty(x=selected_ids))
            layers.logical_and(x=length_cond, y=not_finish_cond, out=cond)

            with fluid.layers.control_flow.Switch() as switch:
                with switch.case(not_finish_cond):
                    new_state = state_sequence_expand(new_state,
                                                      selected_scores)
                    state_assign(new_state, state)

        prediction_ids, prediction_scores = layers.beam_search_decode(
            ids=ids_array,
            scores=scores_array,
            beam_size=self.beam_size,
            end_id=self.end_id)
        return prediction_ids, prediction_scores