args.py 4.9 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import distutils.util


def parse_args():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument(
        '--prepare',
        action='store_true',
        help='create the directories, prepare the vocabulary and embeddings')
    parser.add_argument('--train', action='store_true', help='train the model')
    parser.add_argument(
        '--evaluate', action='store_true', help='evaluate the model on dev set')
    parser.add_argument(
        '--predict',
        action='store_true',
        help='predict the answers for test set with trained model')

    parser.add_argument(
        "--embed_size",
        type=int,
        default=300,
        help="The dimension of embedding table. (default: %(default)d)")
    parser.add_argument(
        "--hidden_size",
        type=int,
        default=150,
        help="The size of rnn hidden unit. (default: %(default)d)")
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=0.001,
        help="Learning rate used to train the model. (default: %(default)f)")
    parser.add_argument('--optim', default='adam', help='optimizer type')
    parser.add_argument(
        "--weight_decay",
        type=float,
        default=0.0001,
        help="Weight decay. (default: %(default)f)")

    parser.add_argument(
        '--drop_rate', type=float, default=0.0, help="Dropout probability")
    parser.add_argument('--random_seed', type=int, default=123)
    parser.add_argument(
        "--batch_size",
        type=int,
        default=32,
        help="The sequence number of a mini-batch data. (default: %(default)d)")
    parser.add_argument(
        "--pass_num",
        type=int,
        default=5,
        help="The number epochs to train. (default: %(default)d)")
    parser.add_argument(
        "--use_gpu",
        type=distutils.util.strtobool,
        default=True,
        help="Whether to use gpu. (default: %(default)d)")
    parser.add_argument(
        "--log_interval",
        type=int,
        default=50,
        help="log the train loss every n batches. (default: %(default)d)")

    parser.add_argument('--max_p_num', type=int, default=5)
    parser.add_argument('--max_a_len', type=int, default=200)
    parser.add_argument('--max_p_len', type=int, default=500)
    parser.add_argument('--max_q_len', type=int, default=60)
    parser.add_argument('--doc_num', type=int, default=5)

    parser.add_argument('--vocab_dir', default='data/vocab', help='vocabulary')
    parser.add_argument(
        "--save_dir",
        type=str,
        default="data/models",
        help="Specify the path to save trained models.")
    parser.add_argument(
        "--save_interval",
        type=int,
        default=1,
        help="Save the trained model every n passes. (default: %(default)d)")
    parser.add_argument(
        "--load_dir",
        type=str,
        default="",
        help="Specify the path to load trained models.")
    parser.add_argument(
        '--log_path',
        help='path of the log file. If not set, logs are printed to console')
    parser.add_argument(
        '--result_dir',
        default='data/results/',
        help='the dir to output the results')
    parser.add_argument(
        '--result_name',
        default='test_result',
        help='the file name of the predicted results')

    parser.add_argument(
        '--trainset',
        nargs='+',
        default=['data/demo/trainset/search.train.json'],
        help='train dataset')
    parser.add_argument(
        '--devset',
        nargs='+',
        default=['data/demo/devset/search.dev.json'],
        help='dev dataset')
    parser.add_argument(
        '--testset',
        nargs='+',
        default=['data/demo/testset/search.test.json'],
        help='test dataset')

    parser.add_argument(
        "--enable_ce",
        action='store_true',
        help="If set, run the task with continuous evaluation logs.")
    parser.add_argument(
        '--para_print', action='store_true', help="Print debug info")
    parser.add_argument(
        "--dev_interval",
        type=int,
        default=-1,
        help="evaluate on dev set loss every n batches. (default: %(default)d)")
    args = parser.parse_args()
    return args