padding.py 2.0 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
"""
Mask, padding and batching.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np


def pad_batch_data(insts,
                   pad_idx=0,
                   return_pos=False,
                   return_input_mask=False,
                   return_max_len=False,
                   return_num_token=False,
                   return_seq_lens=False):
    """
    Pad the instances to the max sequence length in batch, and generate the
    corresponding position data and input mask.
    """
    return_list = []
    max_len = max(len(inst) for inst in insts)
    # Any token included in dict can be used to pad, since the paddings' loss
    # will be masked out by weights and make no effect on parameter gradients.

    inst_data = np.array(
        [inst + list([pad_idx] * (max_len - len(inst))) for inst in insts])
    return_list += [inst_data.astype("int64").reshape([-1, max_len, 1])]

    # position data
    if return_pos:
        inst_pos = np.array([
            list(range(0, len(inst))) + [pad_idx] * (max_len - len(inst))
            for inst in insts
        ])

        return_list += [inst_pos.astype("int64").reshape([-1, max_len, 1])]

    if return_input_mask:
        # This is used to avoid attention on paddings.
        input_mask_data = np.array([[1] * len(inst) + [0] *
                                    (max_len - len(inst)) for inst in insts])
        input_mask_data = np.expand_dims(input_mask_data, axis=-1)
        return_list += [input_mask_data.astype("float32")]

    if return_max_len:
        return_list += [max_len]

    if return_num_token:
        num_token = 0
        for inst in insts:
            num_token += len(inst)
        return_list += [num_token]

    if return_seq_lens:
        seq_lens = np.array([len(inst) for inst in insts])
        return_list += [seq_lens.astype("int64").reshape([-1, 1])]

    return return_list if len(return_list) > 1 else return_list[0]


if __name__ == "__main__":
    pass