task_reader.py 13.3 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
"""
This module provides reader for classification and sequence labing
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from collections import namedtuple
import csv
import json

import numpy as np

from preprocess.ernie import tokenization
from preprocess.padding import pad_batch_data


class BaseReader(object):
    """BaseReader for classify and sequence labeling task"""
    def __init__(self,
                 vocab_path,
                 label_map_config=None,
                 max_seq_len=512,
                 do_lower_case=True,
                 in_tokens=False,
                 random_seed=None):
        self.max_seq_len = max_seq_len
        self.tokenizer = tokenization.FullTokenizer(
            vocab_file=vocab_path, do_lower_case=do_lower_case)
        self.vocab = self.tokenizer.vocab
        self.pad_id = self.vocab["[PAD]"]
        self.cls_id = self.vocab["[CLS]"]
        self.sep_id = self.vocab["[SEP]"]
        self.in_tokens = in_tokens

        np.random.seed(random_seed)

        self.current_example = 0
        self.current_epoch = 0
        self.num_examples = 0

        if label_map_config:
            with open(label_map_config) as f:
                self.label_map = json.load(f)
        else:
            self.label_map = None

    def get_train_progress(self):
        """Gets progress for training phase."""
        return self.current_example, self.current_epoch

    def _read_tsv(self, input_file, quotechar=None):
        """Reads a tab separated value file."""
        with open(input_file, "r") as f:
            reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
            headers = next(reader)
            Example = namedtuple('Example', headers)

            examples = []
            for line in reader:
                example = Example(*line)
                examples.append(example)
            return examples

    def _truncate_seq_pair(self, tokens_a, tokens_b, max_length):
        """Truncates a sequence pair in place to the maximum length."""

        # This is a simple heuristic which will always truncate the longer sequence
        # one token at a time. This makes more sense than truncating an equal percent
        # of tokens from each, since if one sequence is very short then each token
        # that's truncated likely contains more information than a longer sequence.
        while True:
            total_length = len(tokens_a) + len(tokens_b)
            if total_length <= max_length:
                break
            if len(tokens_a) > len(tokens_b):
                tokens_a.pop()
            else:
                tokens_b.pop()

    def _convert_example_to_record(self, example, max_seq_length, tokenizer):
        """Converts a single `Example` into a single `Record`."""

        text_a = tokenization.convert_to_unicode(example.text_a)
        tokens_a = tokenizer.tokenize(text_a)
        tokens_b = None
        if "text_b" in example._fields:
            text_b = tokenization.convert_to_unicode(example.text_b)
            tokens_b = tokenizer.tokenize(text_b)

        if tokens_b:
            # Modifies `tokens_a` and `tokens_b` in place so that the total
            # length is less than the specified length.
            # Account for [CLS], [SEP], [SEP] with "- 3"
            self._truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
        else:
            # Account for [CLS] and [SEP] with "- 2"
            if len(tokens_a) > max_seq_length - 2:
                tokens_a = tokens_a[0:(max_seq_length - 2)]

        # The convention in BERT/ERNIE is:
        # (a) For sequence pairs:
        #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
        #  type_ids: 0     0  0    0    0     0       0 0     1  1  1  1   1 1
        # (b) For single sequences:
        #  tokens:   [CLS] the dog is hairy . [SEP]
        #  type_ids: 0     0   0   0  0     0 0
        #
        # Where "type_ids" are used to indicate whether this is the first
        # sequence or the second sequence. The embedding vectors for `type=0` and
        # `type=1` were learned during pre-training and are added to the wordpiece
        # embedding vector (and position vector). This is not *strictly* necessary
        # since the [SEP] token unambiguously separates the sequences, but it makes
        # it easier for the model to learn the concept of sequences.
        #
        # For classification tasks, the first vector (corresponding to [CLS]) is
        # used as as the "sentence vector". Note that this only makes sense because
        # the entire model is fine-tuned.
        tokens = []
        text_type_ids = []
        tokens.append("[CLS]")
        text_type_ids.append(0)
        for token in tokens_a:
            tokens.append(token)
            text_type_ids.append(0)
        tokens.append("[SEP]")
        text_type_ids.append(0)

        if tokens_b:
            for token in tokens_b:
                tokens.append(token)
                text_type_ids.append(1)
            tokens.append("[SEP]")
            text_type_ids.append(1)

        token_ids = tokenizer.convert_tokens_to_ids(tokens)
        position_ids = list(range(len(token_ids)))

        if self.label_map:
            label_id = self.label_map[example.label]
        else:
            label_id = example.label

        Record = namedtuple(
            'Record',
            ['token_ids', 'text_type_ids', 'position_ids', 'label_id', 'qid'])

        qid = None
        if "qid" in example._fields:
            qid = example.qid

        record = Record(
            token_ids=token_ids,
            text_type_ids=text_type_ids,
            position_ids=position_ids,
            label_id=label_id,
            qid=qid)
        return record

    def _prepare_batch_data(self, examples, batch_size, phase=None):
        """generate batch records"""
        batch_records, max_len = [], 0
        for index, example in enumerate(examples):
            if phase == "train":
                self.current_example = index
            record = self._convert_example_to_record(example, self.max_seq_len,
                                                     self.tokenizer)
            max_len = max(max_len, len(record.token_ids))
            if self.in_tokens:
                to_append = (len(batch_records) + 1) * max_len <= batch_size
            else:
                to_append = len(batch_records) < batch_size
            if to_append:
                batch_records.append(record)
            else:
                yield self._pad_batch_records(batch_records)
                batch_records, max_len = [record], len(record.token_ids)

        if batch_records:
            yield self._pad_batch_records(batch_records)

    def get_num_examples(self, input_file):
        """return total number of examples"""
        examples = self._read_tsv(input_file)
        return len(examples)

    def data_generator(self,
                       input_file,
                       batch_size,
                       epoch,
                       shuffle=True,
                       phase=None):
        """return generator which yields batch data for pyreader"""
        examples = self._read_tsv(input_file)

        def _wrapper():
            for epoch_index in range(epoch):
                if phase == "train":
                    self.current_example = 0
                    self.current_epoch = epoch_index
                if shuffle:
                    np.random.shuffle(examples)

                for batch_data in self._prepare_batch_data(
                        examples, batch_size, phase=phase):
                    yield batch_data

        return _wrapper


class ClassifyReader(BaseReader):
    """ClassifyReader"""
    def _read_tsv(self, input_file, quotechar=None):
        """Reads a tab separated value file."""
        with open(input_file, "r") as f:
            reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
            headers = next(reader)
            text_indices = [
                index for index, h in enumerate(headers) if h != "label"
            ]
            Example = namedtuple('Example', headers)

            examples = []
            for line in reader:
                for index, text in enumerate(line):
                    if index in text_indices:
                        line[index] = text.replace(' ', '')
                example = Example(*line)
                examples.append(example)
            return examples

    def _pad_batch_records(self, batch_records):
        batch_token_ids = [record.token_ids for record in batch_records]
        batch_text_type_ids = [record.text_type_ids for record in batch_records]
        batch_position_ids = [record.position_ids for record in batch_records]
        batch_labels = [record.label_id for record in batch_records]
        batch_labels = np.array(batch_labels).astype("int64").reshape([-1, 1])

        # padding
        padded_token_ids, input_mask, seq_lens = pad_batch_data(
            batch_token_ids, pad_idx=self.pad_id, return_input_mask=True, return_seq_lens=True)
        padded_text_type_ids = pad_batch_data(
            batch_text_type_ids, pad_idx=self.pad_id)
        padded_position_ids = pad_batch_data(
            batch_position_ids, pad_idx=self.pad_id)

        return_list = [
            padded_token_ids, padded_text_type_ids, padded_position_ids,
            input_mask, batch_labels, seq_lens
        ]

        return return_list


class SequenceLabelReader(BaseReader):
    """SequenceLabelReader"""
    def _pad_batch_records(self, batch_records):
        batch_token_ids = [record.token_ids for record in batch_records]
        batch_text_type_ids = [record.text_type_ids for record in batch_records]
        batch_position_ids = [record.position_ids for record in batch_records]
        batch_label_ids = [record.label_ids for record in batch_records]

        # padding
        padded_token_ids, input_mask, batch_seq_lens = pad_batch_data(
            batch_token_ids,
            pad_idx=self.pad_id,
            return_input_mask=True,
            return_seq_lens=True)
        padded_text_type_ids = pad_batch_data(
            batch_text_type_ids, pad_idx=self.pad_id)
        padded_position_ids = pad_batch_data(
            batch_position_ids, pad_idx=self.pad_id)
        padded_label_ids = pad_batch_data(
            batch_label_ids, pad_idx=len(self.label_map) - 1)

        return_list = [
            padded_token_ids, padded_text_type_ids, padded_position_ids,
            input_mask, padded_label_ids, batch_seq_lens
        ]
        return return_list

    def _reseg_token_label(self, tokens, labels, tokenizer):
        assert len(tokens) == len(labels)
        ret_tokens = []
        ret_labels = []
        for token, label in zip(tokens, labels):
            sub_token = tokenizer.tokenize(token)
            if len(sub_token) == 0:
                continue
            ret_tokens.extend(sub_token)
            ret_labels.append(label)
            if len(sub_token) < 2:
                continue
            sub_label = label
            if label.startswith("B-"):
                sub_label = "I-" + label[2:]
            ret_labels.extend([sub_label] * (len(sub_token) - 1))

        assert len(ret_tokens) == len(ret_labels)
        return ret_tokens, ret_labels

    def _convert_example_to_record(self, example, max_seq_length, tokenizer):
        tokens = tokenization.convert_to_unicode(example.text_a).split(u"")
        labels = tokenization.convert_to_unicode(example.label).split(u"")
        tokens, labels = self._reseg_token_label(tokens, labels, tokenizer)

        if len(tokens) > max_seq_length - 2:
            tokens = tokens[0:(max_seq_length - 2)]
            labels = labels[0:(max_seq_length - 2)]

        tokens = ["[CLS]"] + tokens + ["[SEP]"]
        token_ids = tokenizer.convert_tokens_to_ids(tokens)
        position_ids = list(range(len(token_ids)))
        text_type_ids = [0] * len(token_ids)
        no_entity_id = len(self.label_map) - 1
        labels = [label if label in self.label_map else u"O" for label in labels]
        label_ids = [no_entity_id] + [
            self.label_map[label] for label in labels
        ] + [no_entity_id]

        Record = namedtuple(
            'Record',
            ['token_ids', 'text_type_ids', 'position_ids', 'label_ids'])
        record = Record(
            token_ids=token_ids,
            text_type_ids=text_type_ids,
            position_ids=position_ids,
            label_ids=label_ids)
        return record


class ExtractEmbeddingReader(BaseReader):
    """ExtractEmbeddingReader"""
    def _pad_batch_records(self, batch_records):
        batch_token_ids = [record.token_ids for record in batch_records]
        batch_text_type_ids = [record.text_type_ids for record in batch_records]
        batch_position_ids = [record.position_ids for record in batch_records]

        # padding
        padded_token_ids, input_mask, seq_lens = pad_batch_data(
            batch_token_ids,
            pad_idx=self.pad_id,
            return_input_mask=True,
            return_seq_lens=True)
        padded_text_type_ids = pad_batch_data(
            batch_text_type_ids, pad_idx=self.pad_id)
        padded_position_ids = pad_batch_data(
            batch_position_ids, pad_idx=self.pad_id)

        return_list = [
            padded_token_ids, padded_text_type_ids, padded_position_ids,
            input_mask, seq_lens
        ]

        return return_list


if __name__ == '__main__':
    pass