run_classifier.py 13.0 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
"""
Emotion Detection Task
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time
import argparse
import multiprocessing
import sys
sys.path.append("../")

import paddle
import paddle.fluid as fluid
import numpy as np

from models.classification import nets
import reader
import config
import utils

parser = argparse.ArgumentParser(__doc__)
model_g = utils.ArgumentGroup(parser, "model", "model configuration and paths.")
model_g.add_arg("config_path", str, None, "Path to the json file for EmoTect model config.")
model_g.add_arg("init_checkpoint", str, None, "Init checkpoint to resume training from.")
model_g.add_arg("output_dir", str, None, "Directory path to save checkpoints")

train_g = utils.ArgumentGroup(parser, "training", "training options.")
train_g.add_arg("epoch", int, 10, "Number of epoches for training.")
train_g.add_arg("save_steps", int, 10000, "The steps interval to save checkpoints.")
train_g.add_arg("validation_steps", int, 1000, "The steps interval to evaluate model performance.")
train_g.add_arg("lr", float, 0.002, "The Learning rate value for training.")

log_g = utils.ArgumentGroup(parser, "logging", "logging related")
log_g.add_arg("skip_steps", int, 10, "The steps interval to print loss.")
log_g.add_arg("verbose", bool, False, "Whether to output verbose log")

data_g = utils.ArgumentGroup(parser, "data", "Data paths, vocab paths and data processing options")
data_g.add_arg("data_dir", str, None, "Directory path to training data.")
data_g.add_arg("vocab_path", str, None, "Vocabulary path.")
data_g.add_arg("batch_size", int, 256, "Total examples' number in batch for training.")
data_g.add_arg("random_seed", int, 0, "Random seed.")

run_type_g = utils.ArgumentGroup(parser, "run_type", "running type options.")
run_type_g.add_arg("use_cuda", bool, False, "If set, use GPU for training.")
run_type_g.add_arg("task_name", str, None, "The name of task to perform sentiment classification.")
run_type_g.add_arg("do_train", bool, False, "Whether to perform training.")
run_type_g.add_arg("do_val", bool, False, "Whether to perform evaluation.")
run_type_g.add_arg("do_infer", bool, False, "Whether to perform inference.")

args = parser.parse_args()

def create_model(args,
                 pyreader_name,
                 emotect_config,
                 num_labels,
                 is_infer=False):
    """
    Create Model for sentiment classification
    """
    if is_infer:
        pyreader = fluid.layers.py_reader(
            capacity=16,
            shapes=[[-1, 1]],
            dtypes=['int64'],
            lod_levels=[1],
            name=pyreader_name,
            use_double_buffer=False)
    else:
        pyreader = fluid.layers.py_reader(
            capacity=16,
            shapes=([-1, 1], [-1, 1]),
            dtypes=('int64', 'int64'),
            lod_levels=(1, 0),
            name=pyreader_name,
            use_double_buffer=False)

    if emotect_config['model_type'] == "cnn_net":
        network = nets.cnn_net
    elif emotect_config['model_type'] == "bow_net":
        network = nets.bow_net
    elif emotect_config['model_type'] == "lstm_net":
        network = nets.lstm_net
    elif emotect_config['model_type'] == "bilstm_net":
        network = nets.bilstm_net
    elif emotect_config['model_type'] == "gru_net":
        network = nets.gru_net
    elif emotect_config['model_type'] == "textcnn_net":
        network = nets.textcnn_net
    else:
        raise ValueError("Unknown network type!")

    if is_infer:
        data = fluid.layers.read_file(pyreader)
        probs = network(data, None, emotect_config["vocab_size"], class_dim=num_labels, is_infer=True)
        return pyreader, probs

    data, label = fluid.layers.read_file(pyreader)
    avg_loss, probs = network(data, label, emotect_config["vocab_size"], class_dim=num_labels)
    num_seqs = fluid.layers.create_tensor(dtype='int64')
    accuracy = fluid.layers.accuracy(input=probs, label=label, total=num_seqs)
    return pyreader, avg_loss, accuracy, num_seqs


def evaluate(exe, test_program, test_pyreader, fetch_list, eval_phase):
    """
    Evaluation Function
    """
    test_pyreader.start()
    total_cost, total_acc, total_num_seqs = [], [], []
    time_begin = time.time()
    while True:
        try:
            np_loss, np_acc, np_num_seqs = exe.run(program=test_program,
                                                fetch_list=fetch_list,
                                                return_numpy=False)
            np_loss = np.array(np_loss)
            np_acc = np.array(np_acc)
            np_num_seqs = np.array(np_num_seqs)
            total_cost.extend(np_loss * np_num_seqs)
            total_acc.extend(np_acc * np_num_seqs)
            total_num_seqs.extend(np_num_seqs)
        except fluid.core.EOFException:
            test_pyreader.reset()
            break
    time_end = time.time()
    print("[%s evaluation] avg loss: %f, avg acc: %f, elapsed time: %f s" %
        (eval_phase, np.sum(total_cost) / np.sum(total_num_seqs),
        np.sum(total_acc) / np.sum(total_num_seqs), time_end - time_begin))


def infer(exe, infer_program, infer_pyreader, fetch_list, infer_phase):
    infer_pyreader.start()
    time_begin = time.time()
    while True:
        try:
            batch_probs = exe.run(program=infer_program,
                            fetch_list=fetch_list,
                            return_numpy=True)
            for probs in batch_probs[0]:
                print("%d\t%f\t%f\t%f" % (np.argmax(probs), probs[0], probs[1], probs[2]))
        except fluid.core.EOFException as e:
            infer_pyreader.reset()
            break
    time_end = time.time()
    print("[%s] elapsed time: %f s" % (infer_phase, time_end - time_begin))


def main(args):
    """
    Main Function
    """
    emotect_config = config.EmoTectConfig(args.config_path)

    if args.use_cuda:
        place = fluid.CUDAPlace(int(os.getenv('FLAGS_selected_gpus', '0')))
    else:
        place = fluid.CPUPlace()
    exe = fluid.Executor(place)

    task_name = args.task_name.lower()
    processor = reader.EmoTectProcessor(data_dir=args.data_dir,
                                      vocab_path=args.vocab_path,
                                      random_seed=args.random_seed)
    num_labels = len(processor.get_labels())

    if not (args.do_train or args.do_val or args.do_infer):
        raise ValueError("For args `do_train`, `do_val` and `do_infer`, at "
                         "least one of them must be True.")

    startup_prog = fluid.Program()
    if args.random_seed is not None:
        startup_prog.random_seed = args.random_seed

    if args.do_train:
        train_data_generator = processor.data_generator(
            batch_size=args.batch_size,
            phase='train',
            epoch=args.epoch)

        num_train_examples = processor.get_num_examples(phase="train")
        max_train_steps = args.epoch * num_train_examples // args.batch_size + 1

        print("Num train examples: %d" % num_train_examples)
        print("Max train steps: %d" % max_train_steps)

        train_program = fluid.Program()

        with fluid.program_guard(train_program, startup_prog):
            with fluid.unique_name.guard():
                train_pyreader, loss, accuracy, num_seqs = create_model(
                    args,
                    pyreader_name='train_reader',
                    emotect_config=emotect_config,
                    num_labels=num_labels,
                    is_infer=False)

                sgd_optimizer = fluid.optimizer.Adagrad(learning_rate=args.lr)
                sgd_optimizer.minimize(loss)

        if args.verbose:
            lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
                program=train_program, batch_size=args.batch_size)
            print("Theoretical memory usage in training: %.3f - %.3f %s" %
                (lower_mem, upper_mem, unit))

    if args.do_val:
        test_prog = fluid.Program()
        with fluid.program_guard(test_prog, startup_prog):
            with fluid.unique_name.guard():
                test_pyreader, loss, accuracy, num_seqs = create_model(
                    args,
                    pyreader_name='test_reader',
                    emotect_config=emotect_config,
                    num_labels=num_labels,
                    is_infer=False)
        test_prog = test_prog.clone(for_test=True)

    if args.do_infer:
        test_prog = fluid.Program()
        with fluid.program_guard(test_prog, startup_prog):
            with fluid.unique_name.guard():
                infer_pyreader, probs = create_model(
                    args,
                    pyreader_name='infer_reader',
                    emotect_config=emotect_config,
                    num_labels=num_labels,
                    is_infer=True)
        test_prog = test_prog.clone(for_test=True)

    exe.run(startup_prog)

    if args.do_train:
        if args.init_checkpoint:
            utils.init_checkpoint(
                exe,
                args.init_checkpoint,
                main_program=startup_prog)
    elif args.do_val or args.do_infer:
        if not args.init_checkpoint:
            raise ValueError("args 'init_checkpoint' should be set if"
                             "only doing validation or infer!")
        utils.init_checkpoint(
            exe,
            args.init_checkpoint,
            main_program=test_prog)

    if args.do_train:
        train_exe = exe
        train_pyreader.decorate_paddle_reader(train_data_generator)
    else:
        train_exe = None
    if args.do_val or args.do_infer:
        test_exe = exe

    if args.do_train:
        train_pyreader.start()
        steps = 0
        total_cost, total_acc, total_num_seqs = [], [], []
        time_begin = time.time()
        while True:
            try:
                steps += 1
                if steps % args.skip_steps == 0:
                    fetch_list = [loss.name, accuracy.name, num_seqs.name]
                else:
                    fetch_list = []

                outputs = train_exe.run(program=train_program,
                                        fetch_list=fetch_list,
                                        return_numpy=False)
                if steps % args.skip_steps == 0:
                    np_loss, np_acc, np_num_seqs = outputs
                    np_loss = np.array(np_loss)
                    np_acc = np.array(np_acc)
                    np_num_seqs = np.array(np_num_seqs)
                    total_cost.extend(np_loss * np_num_seqs)
                    total_acc.extend(np_acc * np_num_seqs)
                    total_num_seqs.extend(np_num_seqs)

                    if args.verbose:
                        verbose = "train pyreader queue size: %d, " % train_pyreader.queue.size()
                        print(verbose)

                    time_end = time.time()
                    used_time = time_end - time_begin
                    print("step: %d, avg loss: %f, "
                        "avg acc: %f, speed: %f steps/s" %
                        (steps, np.sum(total_cost) / np.sum(total_num_seqs),
                        np.sum(total_acc) / np.sum(total_num_seqs),
                        args.skip_steps / used_time))
                    total_cost, total_acc, total_num_seqs = [], [], []
                    time_begin = time.time()

                if steps % args.save_steps == 0:
                    save_path = os.path.join(args.output_dir, "step_" + str(steps))
                    fluid.io.save_persistables(exe, save_path, train_program)

                if steps % args.validation_steps == 0:
                    # evaluate on dev set
                    if args.do_val:
                        test_pyreader.decorate_paddle_reader(
                            processor.data_generator(
                                batch_size=args.batch_size,
                                phase='dev',
                                epoch=1))
                        evaluate(test_exe, test_prog, test_pyreader,
                                [loss.name, accuracy.name, num_seqs.name],
                                "dev")

            except fluid.core.EOFException:
                save_path = os.path.join(args.output_dir, "step_" + str(steps))
                fluid.io.save_persistables(exe, save_path, train_program)
                train_pyreader.reset()
                break

    # evaluate on test set
    if not args.do_train and args.do_val:
        test_pyreader.decorate_paddle_reader(
            processor.data_generator(
                batch_size=args.batch_size,
                phase='test',
                epoch=1))
        print("Final test result:")
        evaluate(test_exe, test_prog, test_pyreader,
                [loss.name, accuracy.name, num_seqs.name],
                "test")

    # infer
    if args.do_infer:
        infer_pyreader.decorate_paddle_reader(
            processor.data_generator(
                batch_size=args.batch_size,
                phase='infer',
                epoch=1))
        infer(test_exe, test_prog, infer_pyreader,
             [probs.name], "infer")

if __name__ == "__main__":
    utils.print_arguments(args)
    main(args)