train.py 12.2 KB
Newer Older
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
J
Jiabin Yang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18 19
import logging
import os
import six
import sys
import time
20

J
JiabinYang 已提交
21 22
import numpy as np
import paddle
23
import paddle.fluid as fluid
24 25
from paddle.distributed import fleet
from paddle.distributed.fleet.base import role_maker
26 27 28 29 30 31 32 33 34 35 36

from utils.configure import PDConfig
from utils.check import check_gpu, check_version

# include task-specific libs
import reader
from model import Transformer, CrossEntropyCriterion, NoamDecay


def do_train(args):
    if args.use_cuda:
37 38 39
        trainer_count = int(os.getenv("PADDLE_TRAINERS_NUM", 1))
        place_idx = int(os.getenv('FLAGS_selected_gpus', 0))
        place = fluid.CUDAPlace(place_idx)
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
    else:
        trainer_count = 1
        place = fluid.CPUPlace()

    # define the data generator
    processor = reader.DataProcessor(fpattern=args.training_file,
                                     src_vocab_fpath=args.src_vocab_fpath,
                                     trg_vocab_fpath=args.trg_vocab_fpath,
                                     token_delimiter=args.token_delimiter,
                                     use_token_batch=args.use_token_batch,
                                     batch_size=args.batch_size,
                                     device_count=trainer_count,
                                     pool_size=args.pool_size,
                                     sort_type=args.sort_type,
                                     shuffle=args.shuffle,
                                     shuffle_batch=args.shuffle_batch,
                                     start_mark=args.special_token[0],
                                     end_mark=args.special_token[1],
                                     unk_mark=args.special_token[2],
                                     max_length=args.max_length,
                                     n_head=args.n_head)
    batch_generator = processor.data_generator(phase="train")
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
    if args.validation_file:
        val_processor = reader.DataProcessor(
            fpattern=args.validation_file,
            src_vocab_fpath=args.src_vocab_fpath,
            trg_vocab_fpath=args.trg_vocab_fpath,
            token_delimiter=args.token_delimiter,
            use_token_batch=args.use_token_batch,
            batch_size=args.batch_size,
            device_count=trainer_count,
            pool_size=args.pool_size,
            sort_type=args.sort_type,
            shuffle=False,
            shuffle_batch=False,
            start_mark=args.special_token[0],
            end_mark=args.special_token[1],
            unk_mark=args.special_token[2],
            max_length=args.max_length,
            n_head=args.n_head)
        val_batch_generator = val_processor.data_generator(phase="train")
81 82 83 84 85 86
    if trainer_count > 1:  # for multi-process gpu training
        batch_generator = fluid.contrib.reader.distributed_batch_reader(
            batch_generator)
    args.src_vocab_size, args.trg_vocab_size, args.bos_idx, args.eos_idx, \
        args.unk_idx = processor.get_vocab_summary()

87
    with fluid.dygraph.guard(place):
88 89 90 91 92 93 94 95 96
        # set seed for CE
        random_seed = eval(str(args.random_seed))
        if random_seed is not None:
            fluid.default_main_program().random_seed = random_seed
            fluid.default_startup_program().random_seed = random_seed

        # define data loader
        train_loader = fluid.io.DataLoader.from_generator(capacity=10)
        train_loader.set_batch_generator(batch_generator, places=place)
97 98 99
        if args.validation_file:
            val_loader = fluid.io.DataLoader.from_generator(capacity=10)
            val_loader.set_batch_generator(val_batch_generator, places=place)
100

101
        # define model
102 103 104 105 106 107 108 109 110 111 112
        transformer = Transformer(
            args.src_vocab_size, args.trg_vocab_size, args.max_length + 1,
            args.n_layer, args.n_head, args.d_key, args.d_value, args.d_model,
            args.d_inner_hid, args.prepostprocess_dropout,
            args.attention_dropout, args.relu_dropout, args.preprocess_cmd,
            args.postprocess_cmd, args.weight_sharing, args.bos_idx,
            args.eos_idx)

        # define loss
        criterion = CrossEntropyCriterion(args.label_smooth_eps)

113
        # define optimizer
114 115 116 117 118 119 120 121 122 123
        optimizer = fluid.optimizer.Adam(
            learning_rate=NoamDecay(args.d_model, args.warmup_steps,
                                    args.learning_rate),
            beta1=args.beta1,
            beta2=args.beta2,
            epsilon=float(args.eps),
            parameter_list=transformer.parameters())

        ## init from some checkpoint, to resume the previous training
        if args.init_from_checkpoint:
124
            model_dict, opt_dict = fluid.load_dygraph(
125 126 127 128 129
                os.path.join(args.init_from_checkpoint, "transformer"))
            transformer.load_dict(model_dict)
            optimizer.set_dict(opt_dict)
        ## init from some pretrain models, to better solve the current task
        if args.init_from_pretrain_model:
130
            model_dict, _ = fluid.load_dygraph(
131 132 133 134
                os.path.join(args.init_from_pretrain_model, "transformer"))
            transformer.load_dict(model_dict)

        if trainer_count > 1:
135 136 137 138 139 140
            role = role_maker.PaddleCloudRoleMaker(is_collective=True)
            fleet.init(role)
            dist_strategy = fleet.DistributedStrategy()
            optimizer = fleet.distributed_optimizer(optimizer, dist_strategy)
            # call after distributed_optimizer so as to apply dist_strategy
            transformer = fleet.build_distributed_model(transformer)
141

142 143 144 145 146 147 148
        # the best cross-entropy value with label smoothing
        loss_normalizer = -(
            (1. - args.label_smooth_eps) * np.log(
                (1. - args.label_smooth_eps)) +
            args.label_smooth_eps * np.log(args.label_smooth_eps /
                                           (args.trg_vocab_size - 1) + 1e-20))

Z
zhengya01 已提交
149 150
        ce_time = []
        ce_ppl = []
151
        step_idx = 0
152 153 154 155

        #NOTE: used for benchmark
        total_batch_num = 0

156 157 158 159 160
        # train loop
        for pass_id in range(args.epoch):
            pass_start_time = time.time()
            batch_id = 0
            for input_data in train_loader():
161 162 163
                if args.max_iter and total_batch_num == args.max_iter: #NOTE: used for benchmark
                    return
                batch_start = time.time()
164 165 166 167 168 169 170 171 172 173 174 175 176
                (src_word, src_pos, src_slf_attn_bias, trg_word, trg_pos,
                 trg_slf_attn_bias, trg_src_attn_bias, lbl_word,
                 lbl_weight) = input_data
                logits = transformer(src_word, src_pos, src_slf_attn_bias,
                                     trg_word, trg_pos, trg_slf_attn_bias,
                                     trg_src_attn_bias)

                sum_cost, avg_cost, token_num = criterion(
                    logits, lbl_word, lbl_weight)

                if trainer_count > 1:
                    avg_cost = transformer.scale_loss(avg_cost)
                    avg_cost.backward()
177 178
                    transformer.apply_collective_grads()
                else:
179 180 181
                    avg_cost.backward()

                optimizer.minimize(avg_cost)
J
JiabinYang 已提交
182
                transformer.clear_gradients()
183

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
                if step_idx % args.print_step == 0:
                    total_avg_cost = avg_cost.numpy() * trainer_count

                    if step_idx == 0:
                        logging.info(
                            "step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
                            "normalized loss: %f, ppl: %f" %
                            (step_idx, pass_id, batch_id, total_avg_cost,
                            total_avg_cost - loss_normalizer,
                            np.exp([min(total_avg_cost, 100)])))
                        avg_batch_time = time.time()
                    else:
                        logging.info(
                            "step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
                            "normalized loss: %f, ppl: %f, speed: %.2f step/s" %
                            (step_idx, pass_id, batch_id, total_avg_cost,
                            total_avg_cost - loss_normalizer,
                            np.exp([min(total_avg_cost, 100)]),
                            args.print_step / (time.time() - avg_batch_time)))
                        avg_batch_time = time.time()

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234

                if step_idx % args.save_step == 0 and step_idx != 0:
                    # validation
                    if args.validation_file:
                        transformer.eval()
                        total_sum_cost = 0
                        total_token_num = 0
                        for input_data in val_loader():
                            (src_word, src_pos, src_slf_attn_bias, trg_word,
                             trg_pos, trg_slf_attn_bias, trg_src_attn_bias,
                             lbl_word, lbl_weight) = input_data
                            logits = transformer(src_word, src_pos,
                                                 src_slf_attn_bias, trg_word,
                                                 trg_pos, trg_slf_attn_bias,
                                                 trg_src_attn_bias)
                            sum_cost, avg_cost, token_num = criterion(
                                logits, lbl_word, lbl_weight)
                            total_sum_cost += sum_cost.numpy()
                            total_token_num += token_num.numpy()
                            total_avg_cost = total_sum_cost / total_token_num
                        logging.info("validation, step_idx: %d, avg loss: %f, "
                                     "normalized loss: %f, ppl: %f" %
                                     (step_idx, total_avg_cost,
                                      total_avg_cost - loss_normalizer,
                                      np.exp([min(total_avg_cost, 100)])))
                        transformer.train()

                    if args.save_model and (
                            trainer_count == 1
                            or fluid.dygraph.parallel.Env().dev_id == 0):
235 236 237 238 239 240 241 242 243 244 245 246
                        model_dir = os.path.join(args.save_model,
                                                 "step_" + str(step_idx))
                        if not os.path.exists(model_dir):
                            os.makedirs(model_dir)
                        fluid.save_dygraph(
                            transformer.state_dict(),
                            os.path.join(model_dir, "transformer"))
                        fluid.save_dygraph(
                            optimizer.state_dict(),
                            os.path.join(model_dir, "transformer"))

                batch_id += 1
247
                total_batch_num = total_batch_num + 1
248 249
                step_idx += 1

Z
zhengya01 已提交
250 251
            time_consumed = time.time() - pass_start_time
            ce_time.append(time_consumed)
252 253 254 255 256 257 258 259 260 261

        if args.save_model:
            model_dir = os.path.join(args.save_model, "step_final")
            if not os.path.exists(model_dir):
                os.makedirs(model_dir)
            fluid.save_dygraph(transformer.state_dict(),
                               os.path.join(model_dir, "transformer"))
            fluid.save_dygraph(optimizer.state_dict(),
                               os.path.join(model_dir, "transformer"))

Z
zhengya01 已提交
262 263 264 265 266 267 268 269 270 271 272
        if args.enable_ce:
            _ppl = 0
            _time = 0
            try:
                _time = ce_time[-1]
                _ppl = ce_ppl[-1]
            except:
                print("ce info error")
            print("kpis\ttrain_duration_card%s\t%s" % (trainer_count, _time))
            print("kpis\ttrain_ppl_card%s\t%f" % (trainer_count, _ppl))

273 274 275 276 277 278 279 280 281

if __name__ == "__main__":
    args = PDConfig(yaml_file="./transformer.yaml")
    args.build()
    args.Print()
    check_gpu(args.use_cuda)
    check_version()

    do_train(args)