mask_rcnn_r50_2x.yml 2.5 KB
Newer Older
1 2 3 4
architecture: MaskRCNN
train_feed: MaskRCNNTrainFeed
eval_feed: MaskRCNNEvalFeed
test_feed: MaskRCNNTestFeed
Y
Yang Zhang 已提交
5
use_gpu: true
6 7 8 9
max_iters: 360000
snapshot_iter: 10000
log_smooth_window: 20
save_dir: output
Y
Yang Zhang 已提交
10
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
11
metric: COCO
12
weights: output/mask_rcnn_r50_2x/model_final/
13 14 15 16 17 18 19 20 21 22 23 24 25

MaskRCNN:
  backbone: ResNet
  rpn_head: RPNHead
  roi_extractor: RoIAlign
  bbox_assigner: BBoxAssigner
  bbox_head: BBoxHead
  mask_assigner: MaskAssigner
  mask_head: MaskHead


ResNet:
  norm_type: affine_channel
26
  norm_decay: 0.
27
  depth: 50
28
  feature_maps: 4
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
  freeze_at: 2

ResNetC5:
  norm_type: affine_channel

RPNHead:
  anchor_generator:
    anchor_sizes: [32, 64, 128, 256, 512]
    aspect_ratios: [0.5, 1.0, 2.0]
    stride: [16.0, 16.0]
    variance: [1.0, 1.0, 1.0, 1.0]
  rpn_target_assign:
    rpn_batch_size_per_im: 256
    rpn_fg_fraction: 0.5
    rpn_negative_overlap: 0.3
    rpn_positive_overlap: 0.7
    rpn_straddle_thresh: 0.0
  train_proposal:
    min_size: 0.0
    nms_thresh: 0.7
    pre_nms_top_n: 12000
    post_nms_top_n: 2000
  test_proposal:
    min_size: 0.0
    nms_thresh: 0.7
    pre_nms_top_n: 6000
    post_nms_top_n: 1000

RoIAlign:
  resolution: 14
  spatial_scale: 0.0625
  sampling_ratio: 0

BBoxHead:
  head: ResNetC5
  nms:
    keep_top_k: 100
    nms_threshold: 0.5
    normalized: false
    score_threshold: 0.05
  num_classes: 81

MaskHead:
  dilation: 1
  num_chan_reduced: 256
  num_classes: 81
  resolution: 14

BBoxAssigner:
  batch_size_per_im: 512
  bbox_reg_weights: [0.1, 0.1, 0.2, 0.2]
  bg_thresh_hi: 0.5
  bg_thresh_lo: 0.0
  fg_fraction: 0.25
  fg_thresh: 0.5
  num_classes: 81

MaskAssigner:
  num_classes: 81
  resolution: 14

LearningRate:
  base_lr: 0.01
  schedulers:
  - !PiecewiseDecay
    gamma: 0.1
    milestones: [240000, 320000]
  #start the warm up from base_lr * start_factor
  - !LinearWarmup
    start_factor: 0.3333333333333333
    steps: 500

OptimizerBuilder:
  optimizer:
    momentum: 0.9
    type: Momentum
  regularizer:
    factor: 0.0001
    type: L2

MaskRCNNTrainFeed:
  batch_size: 1
  dataset:
112
    dataset_dir: dataset/coco
113 114 115 116 117 118 119
    annotation: annotations/instances_train2017.json
    image_dir: train2017
  num_workers: 2

MaskRCNNEvalFeed:
  batch_size: 1
  dataset:
120
    dataset_dir: dataset/coco
121 122 123 124 125 126 127
    annotation: annotations/instances_val2017.json
    image_dir: val2017

MaskRCNNTestFeed:
  batch_size: 1
  dataset:
    annotation: annotations/instances_val2017.json