train.py 7.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from mobilenet_v1 import *
from mobilenet_v2 import *
import os
import numpy as np
import time
import sys
import sys
import numpy as np
import argparse
import ast
import paddle
import paddle.fluid as fluid
from paddle.fluid.initializer import MSRA
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
C
chajchaj 已提交
30
#from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, FC
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
from paddle.fluid.dygraph.base import to_variable

from paddle.fluid import framework

import math
import sys
import reader
from utils import *

IMAGENET1000 = 1281167
base_lr = 0.1
momentum_rate = 0.9
l2_decay = 1e-4

args = parse_args()
if int(os.getenv("PADDLE_TRAINER_ID", 0)) == 0:
    print_arguments(args)


def eval(net, test_data_loader, eop):
    total_loss = 0.0
    total_acc1 = 0.0
    total_acc5 = 0.0
    total_sample = 0
    t_last = 0
    for img, label in test_data_loader():
        t1 = time.time()
        label = to_variable(label.numpy().astype('int64').reshape(
            int(args.batch_size / paddle.fluid.core.get_cuda_device_count()),
            1))
        out = net(img)
        softmax_out = fluid.layers.softmax(out, use_cudnn=False)
        loss = fluid.layers.cross_entropy(input=softmax_out, label=label)
        avg_loss = fluid.layers.mean(x=loss)
        acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
        acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)
        t2 = time.time()
        print( "test | epoch id: %d, avg_loss %0.5f acc_top1 %0.5f acc_top5 %0.5f %2.4f sec read_t:%2.4f" % \
                (eop, avg_loss.numpy(), acc_top1.numpy(), acc_top5.numpy(), t2 - t1 , t1 - t_last))
        sys.stdout.flush()
        total_loss += avg_loss.numpy()
        total_acc1 += acc_top1.numpy()
        total_acc5 += acc_top5.numpy()
        total_sample += 1
        t_last = time.time()
    print("final eval loss %0.3f acc1 %0.3f acc5 %0.3f" % \
          (total_loss / total_sample, \
           total_acc1 / total_sample, total_acc5 / total_sample))
    sys.stdout.flush()


def train_mobilenet():
    epoch = args.num_epochs
    place = fluid.CUDAPlace(fluid.dygraph.parallel.Env().dev_id) \
        if args.use_data_parallel else fluid.CUDAPlace(0)
    with fluid.dygraph.guard(place):
        if args.ce:
            print("ce mode")
            seed = 33
            np.random.seed(seed)
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
        if args.use_data_parallel:
            strategy = fluid.dygraph.parallel.prepare_context()

        net = None
        if args.model == "MobileNetV1":
C
chajchaj 已提交
98
            net = MobileNetV1(class_dim=args.class_dim)
99 100
            para_name = 'mobilenet_v1_params'
        elif args.model == "MobileNetV2":
C
chajchaj 已提交
101
            net = MobileNetV2(class_dim=args.class_dim, scale=1.0)
102 103 104 105 106 107 108
            para_name = 'mobilenet_v2_params'
        else:
            print(
                "wrong model name, please try model = MobileNetV1 or MobileNetV2"
            )
            exit()

C
chajchaj 已提交
109
        optimizer = create_optimizer(args=args, parameter_list=net.parameters())
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
        if args.use_data_parallel:
            net = fluid.dygraph.parallel.DataParallel(net, strategy)
        train_data_loader, train_data = utility.create_data_loader(
            is_train=True, args=args)
        test_data_loader, test_data = utility.create_data_loader(
            is_train=False, args=args)
        num_trainers = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))
        imagenet_reader = reader.ImageNetReader(0)
        train_reader = imagenet_reader.train(settings=args)
        test_reader = imagenet_reader.val(settings=args)
        train_data_loader.set_sample_list_generator(train_reader, place)
        test_data_loader.set_sample_list_generator(test_reader, place)
        for eop in range(epoch):
            if num_trainers > 1:
                imagenet_reader.set_shuffle_seed(eop + (
                    args.random_seed if args.random_seed else 0))
            net.train()
            total_loss = 0.0
            total_acc1 = 0.0
            total_acc5 = 0.0
            total_sample = 0
            batch_id = 0
            t_last = 0
            for img, label in train_data_loader():
                t1 = time.time()
                label = to_variable(label.numpy().astype('int64').reshape(
                    int(args.batch_size /
                        paddle.fluid.core.get_cuda_device_count()), 1))
                t_start = time.time()
                out = net(img)
                t_end = time.time()
                softmax_out = fluid.layers.softmax(out, use_cudnn=False)
                loss = fluid.layers.cross_entropy(
                    input=softmax_out, label=label)
                avg_loss = fluid.layers.mean(x=loss)
                acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
                acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)
                t_start_back = time.time()
                if args.use_data_parallel:
                    avg_loss = net.scale_loss(avg_loss)
                    avg_loss.backward()
                    net.apply_collective_grads()
                else:
                    avg_loss.backward()
                t_end_back = time.time()
                optimizer.minimize(avg_loss)
                net.clear_gradients()
                t2 = time.time()
                train_batch_elapse = t2 - t1
                if batch_id % args.print_step == 0:
                    print( "epoch id: %d, batch step: %d,  avg_loss %0.5f acc_top1 %0.5f acc_top5 %0.5f %2.4f sec net_t:%2.4f back_t:%2.4f read_t:%2.4f" % \
                            (eop, batch_id, avg_loss.numpy(), acc_top1.numpy(), acc_top5.numpy(), train_batch_elapse,
                              t_end - t_start, t_end_back - t_start_back,  t1 - t_last))
                    sys.stdout.flush()
                total_loss += avg_loss.numpy()
                total_acc1 += acc_top1.numpy()
                total_acc5 += acc_top5.numpy()
                total_sample += 1
                batch_id += 1
                t_last = time.time()
            if args.ce:
                print("kpis\ttrain_acc1\t%0.3f" % (total_acc1 / total_sample))
                print("kpis\ttrain_acc5\t%0.3f" % (total_acc5 / total_sample))
                print("kpis\ttrain_loss\t%0.3f" % (total_loss / total_sample))
            print("epoch %d | batch step %d, loss %0.3f acc1 %0.3f acc5 %0.3f %2.4f sec" % \
                  (eop, batch_id, total_loss / total_sample, \
                   total_acc1 / total_sample, total_acc5 / total_sample, train_batch_elapse))
            net.eval()
            eval(net, test_data_loader, eop)
            save_parameters = (not args.use_data_parallel) or (
                args.use_data_parallel and
                fluid.dygraph.parallel.Env().local_rank == 0)
            if save_parameters:
                fluid.save_dygraph(net.state_dict(), para_name)


if __name__ == '__main__':
    train_mobilenet()