Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
80cbdf27
M
models
项目概览
PaddlePaddle
/
models
接近 2 年 前同步成功
通知
230
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
80cbdf27
编写于
1月 19, 2020
作者:
C
chajchaj
提交者:
ruri
1月 19, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
up to paddle 1.7 (#4216)
上级
c98dbafd
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
102 addition
and
99 deletion
+102
-99
dygraph/mobilenet/mobilenet_v1.py
dygraph/mobilenet/mobilenet_v1.py
+32
-34
dygraph/mobilenet/mobilenet_v2.py
dygraph/mobilenet/mobilenet_v2.py
+42
-45
dygraph/mobilenet/run_mul_v1.sh
dygraph/mobilenet/run_mul_v1.sh
+1
-1
dygraph/mobilenet/run_mul_v2.sh
dygraph/mobilenet/run_mul_v2.sh
+1
-1
dygraph/mobilenet/run_sing_v1.sh
dygraph/mobilenet/run_sing_v1.sh
+1
-1
dygraph/mobilenet/run_sing_v2.sh
dygraph/mobilenet/run_sing_v2.sh
+1
-1
dygraph/mobilenet/train.py
dygraph/mobilenet/train.py
+4
-5
dygraph/mobilenet/utils/optimizer.py
dygraph/mobilenet/utils/optimizer.py
+20
-11
未找到文件。
dygraph/mobilenet/mobilenet_v1.py
浏览文件 @
80cbdf27
...
...
@@ -23,7 +23,7 @@ import paddle.fluid as fluid
from
paddle.fluid.initializer
import
MSRA
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
FC
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
from
paddle.fluid.dygraph.base
import
to_variable
from
paddle.fluid
import
framework
import
math
...
...
@@ -32,7 +32,7 @@ import sys
class
ConvBNLayer
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
n
ame_scope
,
n
um_channels
,
filter_size
,
num_filters
,
stride
,
...
...
@@ -42,10 +42,10 @@ class ConvBNLayer(fluid.dygraph.Layer):
act
=
'relu'
,
use_cudnn
=
True
,
name
=
None
):
super
(
ConvBNLayer
,
self
).
__init__
(
name_scope
)
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
_conv
=
Conv2D
(
self
.
full_name
()
,
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
...
...
@@ -58,13 +58,12 @@ class ConvBNLayer(fluid.dygraph.Layer):
bias_attr
=
False
)
self
.
_batch_norm
=
BatchNorm
(
self
.
full_name
(),
num_filters
,
act
=
act
,
param_attr
=
ParamAttr
(
name
=
"_bn"
+
"_scale"
),
bias_attr
=
ParamAttr
(
name
=
"_bn"
+
"_offset"
),
moving_mean_name
=
"_bn"
+
'_mean'
,
moving_variance_name
=
"_bn"
+
'_variance'
)
param_attr
=
ParamAttr
(
name
=
self
.
full_name
()
+
"_bn"
+
"_scale"
),
bias_attr
=
ParamAttr
(
name
=
self
.
full_name
()
+
"_bn"
+
"_offset"
),
moving_mean_name
=
self
.
full_name
()
+
"_bn"
+
'_mean'
,
moving_variance_name
=
self
.
full_name
()
+
"_bn"
+
'_variance'
)
def
forward
(
self
,
inputs
):
y
=
self
.
_conv
(
inputs
)
...
...
@@ -74,17 +73,17 @@ class ConvBNLayer(fluid.dygraph.Layer):
class
DepthwiseSeparable
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
n
ame_scope
,
n
um_channels
,
num_filters1
,
num_filters2
,
num_groups
,
stride
,
scale
,
name
=
None
):
super
(
DepthwiseSeparable
,
self
).
__init__
(
name_scope
)
super
(
DepthwiseSeparable
,
self
).
__init__
()
self
.
_depthwise_conv
=
ConvBNLayer
(
n
ame_scope
=
"dw"
,
n
um_channels
=
num_channels
,
num_filters
=
int
(
num_filters1
*
scale
),
filter_size
=
3
,
stride
=
stride
,
...
...
@@ -93,7 +92,7 @@ class DepthwiseSeparable(fluid.dygraph.Layer):
use_cudnn
=
False
)
self
.
_pointwise_conv
=
ConvBNLayer
(
n
ame_scope
=
"sep"
,
n
um_channels
=
int
(
num_filters1
*
scale
)
,
filter_size
=
1
,
num_filters
=
int
(
num_filters2
*
scale
),
stride
=
1
,
...
...
@@ -106,13 +105,13 @@ class DepthwiseSeparable(fluid.dygraph.Layer):
class
MobileNetV1
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
name_scope
,
scale
=
1.0
,
class_dim
=
102
):
super
(
MobileNetV1
,
self
).
__init__
(
name_scope
)
def
__init__
(
self
,
scale
=
1.0
,
class_dim
=
1000
):
super
(
MobileNetV1
,
self
).
__init__
()
self
.
scale
=
scale
self
.
dwsl
=
[]
self
.
conv1
=
ConvBNLayer
(
n
ame_scope
=
"conv1"
,
n
um_channels
=
3
,
filter_size
=
3
,
channels
=
3
,
num_filters
=
int
(
32
*
scale
),
...
...
@@ -121,7 +120,7 @@ class MobileNetV1(fluid.dygraph.Layer):
dws21
=
self
.
add_sublayer
(
sublayer
=
DepthwiseSeparable
(
n
ame_scope
=
"conv2_1"
,
n
um_channels
=
int
(
32
*
scale
)
,
num_filters1
=
32
,
num_filters2
=
64
,
num_groups
=
32
,
...
...
@@ -132,7 +131,7 @@ class MobileNetV1(fluid.dygraph.Layer):
dws22
=
self
.
add_sublayer
(
sublayer
=
DepthwiseSeparable
(
n
ame_scope
=
"conv2_2"
,
n
um_channels
=
int
(
64
*
scale
)
,
num_filters1
=
64
,
num_filters2
=
128
,
num_groups
=
64
,
...
...
@@ -143,7 +142,7 @@ class MobileNetV1(fluid.dygraph.Layer):
dws31
=
self
.
add_sublayer
(
sublayer
=
DepthwiseSeparable
(
n
ame_scope
=
"conv3_1"
,
n
um_channels
=
int
(
128
*
scale
)
,
num_filters1
=
128
,
num_filters2
=
128
,
num_groups
=
128
,
...
...
@@ -154,7 +153,7 @@ class MobileNetV1(fluid.dygraph.Layer):
dws32
=
self
.
add_sublayer
(
sublayer
=
DepthwiseSeparable
(
n
ame_scope
=
"conv3_2"
,
n
um_channels
=
int
(
128
*
scale
)
,
num_filters1
=
128
,
num_filters2
=
256
,
num_groups
=
128
,
...
...
@@ -165,7 +164,7 @@ class MobileNetV1(fluid.dygraph.Layer):
dws41
=
self
.
add_sublayer
(
sublayer
=
DepthwiseSeparable
(
n
ame_scope
=
"conv4_1"
,
n
um_channels
=
int
(
256
*
scale
)
,
num_filters1
=
256
,
num_filters2
=
256
,
num_groups
=
256
,
...
...
@@ -176,7 +175,7 @@ class MobileNetV1(fluid.dygraph.Layer):
dws42
=
self
.
add_sublayer
(
sublayer
=
DepthwiseSeparable
(
n
ame_scope
=
"conv4_2"
,
n
um_channels
=
int
(
256
*
scale
)
,
num_filters1
=
256
,
num_filters2
=
512
,
num_groups
=
256
,
...
...
@@ -188,7 +187,7 @@ class MobileNetV1(fluid.dygraph.Layer):
for
i
in
range
(
5
):
tmp
=
self
.
add_sublayer
(
sublayer
=
DepthwiseSeparable
(
n
ame_scope
=
"conv5_"
+
str
(
i
+
1
),
n
um_channels
=
int
(
512
*
scale
),
num_filters1
=
512
,
num_filters2
=
512
,
num_groups
=
512
,
...
...
@@ -199,7 +198,7 @@ class MobileNetV1(fluid.dygraph.Layer):
dws56
=
self
.
add_sublayer
(
sublayer
=
DepthwiseSeparable
(
n
ame_scope
=
"conv5_6"
,
n
um_channels
=
int
(
512
*
scale
)
,
num_filters1
=
512
,
num_filters2
=
1024
,
num_groups
=
512
,
...
...
@@ -210,7 +209,7 @@ class MobileNetV1(fluid.dygraph.Layer):
dws6
=
self
.
add_sublayer
(
sublayer
=
DepthwiseSeparable
(
n
ame_scope
=
"conv6"
,
n
um_channels
=
int
(
1024
*
scale
)
,
num_filters1
=
1024
,
num_filters2
=
1024
,
num_groups
=
1024
,
...
...
@@ -219,21 +218,20 @@ class MobileNetV1(fluid.dygraph.Layer):
name
=
"conv6"
)
self
.
dwsl
.
append
(
dws6
)
self
.
pool2d_avg
=
Pool2D
(
name_scope
=
"pool"
,
pool_type
=
'avg'
,
global_pooling
=
True
)
self
.
pool2d_avg
=
Pool2D
(
pool_type
=
'avg'
,
global_pooling
=
True
)
self
.
out
=
FC
(
name_scope
=
"fc"
,
size
=
class_dim
,
param_attr
=
ParamAttr
(
initializer
=
MSRA
(),
name
=
self
.
full_name
()
+
"fc7_weights"
),
bias_attr
=
ParamAttr
(
name
=
"fc7_offset"
))
self
.
out
=
Linear
(
int
(
1024
*
scale
)
,
class_dim
,
param_attr
=
ParamAttr
(
initializer
=
MSRA
(),
name
=
self
.
full_name
()
+
"fc7_weights"
),
bias_attr
=
ParamAttr
(
name
=
"fc7_offset"
))
def
forward
(
self
,
inputs
):
y
=
self
.
conv1
(
inputs
)
idx
=
0
for
dws
in
self
.
dwsl
:
y
=
dws
(
y
)
y
=
self
.
pool2d_avg
(
y
)
y
=
fluid
.
layers
.
reshape
(
y
,
shape
=
[
-
1
,
1024
])
y
=
self
.
out
(
y
)
return
y
dygraph/mobilenet/mobilenet_v2.py
浏览文件 @
80cbdf27
...
...
@@ -25,7 +25,7 @@ import paddle.fluid as fluid
from
paddle.fluid.initializer
import
MSRA
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
FC
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
from
paddle.fluid.dygraph.base
import
to_variable
from
paddle.fluid
import
framework
...
...
@@ -36,19 +36,19 @@ import sys
class
ConvBNLayer
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channels
,
filter_size
,
num_filters
,
stride
,
padding
,
channels
=
None
,
num_groups
=
1
,
name
=
None
,
use_cudnn
=
True
):
super
(
ConvBNLayer
,
self
).
__init__
(
name
)
super
(
ConvBNLayer
,
self
).
__init__
()
tmp_param
=
ParamAttr
(
name
=
name
+
"_weights"
)
tmp_param
=
ParamAttr
(
name
=
self
.
full_name
()
+
"_weights"
)
self
.
_conv
=
Conv2D
(
self
.
full_name
()
,
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
...
...
@@ -60,12 +60,11 @@ class ConvBNLayer(fluid.dygraph.Layer):
bias_attr
=
False
)
self
.
_batch_norm
=
BatchNorm
(
self
.
full_name
(),
num_filters
,
param_attr
=
ParamAttr
(
name
=
name
+
"_bn"
+
"_scale"
),
bias_attr
=
ParamAttr
(
name
=
name
+
"_bn"
+
"_offset"
),
moving_mean_name
=
name
+
"_bn"
+
'_mean'
,
moving_variance_name
=
name
+
"_bn"
+
'_variance'
)
param_attr
=
ParamAttr
(
name
=
self
.
full_name
()
+
"_bn"
+
"_scale"
),
bias_attr
=
ParamAttr
(
name
=
self
.
full_name
()
+
"_bn"
+
"_offset"
),
moving_mean_name
=
self
.
full_name
()
+
"_bn"
+
'_mean'
,
moving_variance_name
=
self
.
full_name
()
+
"_bn"
+
'_variance'
)
def
forward
(
self
,
inputs
,
if_act
=
True
):
y
=
self
.
_conv
(
inputs
)
...
...
@@ -76,18 +75,19 @@ class ConvBNLayer(fluid.dygraph.Layer):
class
InvertedResidualUnit
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_in_filter
,
num_filters
,
stride
,
filter_size
,
padding
,
expansion_factor
,
name
=
None
):
super
(
InvertedResidualUnit
,
self
).
__init__
(
name
)
def
__init__
(
self
,
num_channels
,
num_in_filter
,
num_filters
,
stride
,
filter_size
,
padding
,
expansion_factor
,
):
super
(
InvertedResidualUnit
,
self
).
__init__
()
num_expfilter
=
int
(
round
(
num_in_filter
*
expansion_factor
))
self
.
_expand_conv
=
ConvBNLayer
(
n
ame
=
name
+
"_expand"
,
n
um_channels
=
num_channels
,
num_filters
=
num_expfilter
,
filter_size
=
1
,
stride
=
1
,
...
...
@@ -95,7 +95,7 @@ class InvertedResidualUnit(fluid.dygraph.Layer):
num_groups
=
1
)
self
.
_bottleneck_conv
=
ConvBNLayer
(
n
ame
=
name
+
"_dwise"
,
n
um_channels
=
num_expfilter
,
num_filters
=
num_expfilter
,
filter_size
=
filter_size
,
stride
=
stride
,
...
...
@@ -104,7 +104,7 @@ class InvertedResidualUnit(fluid.dygraph.Layer):
use_cudnn
=
False
)
self
.
_linear_conv
=
ConvBNLayer
(
n
ame
=
name
+
"_linear"
,
n
um_channels
=
num_expfilter
,
num_filters
=
num_filters
,
filter_size
=
1
,
stride
=
1
,
...
...
@@ -121,11 +121,11 @@ class InvertedResidualUnit(fluid.dygraph.Layer):
class
InvresiBlocks
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
in_c
,
t
,
c
,
n
,
s
,
name
=
None
):
super
(
InvresiBlocks
,
self
).
__init__
(
name
)
def
__init__
(
self
,
in_c
,
t
,
c
,
n
,
s
):
super
(
InvresiBlocks
,
self
).
__init__
()
self
.
_first_block
=
InvertedResidualUnit
(
n
ame
=
name
+
"_1"
,
n
um_channels
=
in_c
,
num_in_filter
=
in_c
,
num_filters
=
c
,
stride
=
s
,
...
...
@@ -137,14 +137,14 @@ class InvresiBlocks(fluid.dygraph.Layer):
for
i
in
range
(
1
,
n
):
tmp
=
self
.
add_sublayer
(
sublayer
=
InvertedResidualUnit
(
n
ame
=
name
+
"_"
+
str
(
i
+
1
)
,
n
um_channels
=
c
,
num_in_filter
=
c
,
num_filters
=
c
,
stride
=
1
,
filter_size
=
3
,
padding
=
1
,
expansion_factor
=
t
),
name
=
name
+
"_"
+
str
(
i
+
1
))
name
=
self
.
full_name
()
+
"_"
+
str
(
i
+
1
))
self
.
_inv_blocks
.
append
(
tmp
)
def
forward
(
self
,
inputs
):
...
...
@@ -155,8 +155,8 @@ class InvresiBlocks(fluid.dygraph.Layer):
class
MobileNetV2
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
name
,
class_dim
=
1000
,
scale
=
1.0
):
super
(
MobileNetV2
,
self
).
__init__
(
name
)
def
__init__
(
self
,
class_dim
=
1000
,
scale
=
1.0
):
super
(
MobileNetV2
,
self
).
__init__
()
self
.
scale
=
scale
self
.
class_dim
=
class_dim
...
...
@@ -172,7 +172,7 @@ class MobileNetV2(fluid.dygraph.Layer):
#1. conv1
self
.
_conv1
=
ConvBNLayer
(
n
ame
=
"conv1_1"
,
n
um_channels
=
3
,
num_filters
=
int
(
32
*
scale
),
filter_size
=
3
,
stride
=
2
,
...
...
@@ -187,34 +187,30 @@ class MobileNetV2(fluid.dygraph.Layer):
i
+=
1
tmp
=
self
.
add_sublayer
(
sublayer
=
InvresiBlocks
(
name
=
'conv'
+
str
(
i
),
in_c
=
in_c
,
t
=
t
,
c
=
int
(
c
*
scale
),
n
=
n
,
s
=
s
),
in_c
=
in_c
,
t
=
t
,
c
=
int
(
c
*
scale
),
n
=
n
,
s
=
s
),
name
=
'conv'
+
str
(
i
))
self
.
_invl
.
append
(
tmp
)
in_c
=
int
(
c
*
scale
)
#3. last_conv
self
.
_out_c
=
int
(
1280
*
scale
)
if
scale
>
1.0
else
1280
self
.
_conv9
=
ConvBNLayer
(
n
ame
=
"conv9"
,
num_filters
=
int
(
1280
*
scale
)
if
scale
>
1.0
else
1280
,
n
um_channels
=
in_c
,
num_filters
=
self
.
_out_c
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
)
#4. pool
self
.
_pool2d_avg
=
Pool2D
(
name_scope
=
"pool"
,
pool_type
=
'avg'
,
global_pooling
=
True
)
self
.
_pool2d_avg
=
Pool2D
(
pool_type
=
'avg'
,
global_pooling
=
True
)
#5. fc
tmp_param
=
ParamAttr
(
name
=
"fc10_weights"
)
self
.
_fc
=
FC
(
name_scope
=
"fc"
,
size
=
class_dim
,
param_attr
=
tmp_param
,
bias_attr
=
ParamAttr
(
name
=
"fc10_offset"
))
tmp_param
=
ParamAttr
(
name
=
self
.
full_name
()
+
"fc10_weights"
)
self
.
_fc
=
Linear
(
self
.
_out_c
,
class_dim
,
param_attr
=
tmp_param
,
bias_attr
=
ParamAttr
(
name
=
"fc10_offset"
))
def
forward
(
self
,
inputs
):
y
=
self
.
_conv1
(
inputs
,
if_act
=
True
)
...
...
@@ -222,5 +218,6 @@ class MobileNetV2(fluid.dygraph.Layer):
y
=
inv
(
y
)
y
=
self
.
_conv9
(
y
,
if_act
=
True
)
y
=
self
.
_pool2d_avg
(
y
)
y
=
fluid
.
layers
.
reshape
(
y
,
shape
=
[
-
1
,
self
.
_out_c
])
y
=
self
.
_fc
(
y
)
return
y
dygraph/mobilenet/run_mul_v1.sh
浏览文件 @
80cbdf27
export
CUDA_VISIBLE_DEVICES
=
0,1,2,3
python
-m
paddle.distributed.launch
--log_dir
./mylog.time train.py
--use_data_parallel
1
--batch_size
=
256
--reader_thread
=
8
--total_images
=
1281167
--class_dim
=
1000
--image_shape
=
3,224,224
--model_save_dir
=
output/
--lr_strategy
=
piecewise_decay
--lr
=
0.1
--data_dir
=
../../PaddleCV/image_classification/data/ILSVRC2012
--l2_decay
=
3e-5
--model
=
MobileNetV1
python
3
-m
paddle.distributed.launch
--log_dir
./mylog.time train.py
--use_data_parallel
1
--batch_size
=
256
--reader_thread
=
8
--total_images
=
1281167
--class_dim
=
1000
--image_shape
=
3,224,224
--model_save_dir
=
output/
--lr_strategy
=
piecewise_decay
--lr
=
0.1
--data_dir
=
../../PaddleCV/image_classification/data/ILSVRC2012
--l2_decay
=
3e-5
--model
=
MobileNetV1
dygraph/mobilenet/run_mul_v2.sh
浏览文件 @
80cbdf27
export
CUDA_VISIBLE_DEVICES
=
0,1,2,3
python
-m
paddle.distributed.launch
--log_dir
./mylog.time train.py
--use_data_parallel
1
--batch_size
=
256
--reader_thread
=
8
--total_images
=
1281167
--class_dim
=
1000
--image_shape
=
3,224,224
--model_save_dir
=
output/
--lr_strategy
=
piecewise_decay
--lr
=
0.1
--data_dir
=
../../PaddleCV/image_classification/data/ILSVRC2012
--l2_decay
=
3e-5
--model
=
MobileNetV2
python
3
-m
paddle.distributed.launch
--log_dir
./mylog.time train.py
--use_data_parallel
1
--batch_size
=
256
--reader_thread
=
8
--total_images
=
1281167
--class_dim
=
1000
--image_shape
=
3,224,224
--model_save_dir
=
output/
--lr_strategy
=
piecewise_decay
--lr
=
0.1
--data_dir
=
../../PaddleCV/image_classification/data/ILSVRC2012
--l2_decay
=
3e-5
--model
=
MobileNetV2
dygraph/mobilenet/run_sing_v1.sh
浏览文件 @
80cbdf27
export
CUDA_VISIBLE_DEVICES
=
0
python train.py
--batch_size
=
256
--total_images
=
1281167
--class_dim
=
1000
--image_shape
=
3,224,224
--model_save_dir
=
output/
--lr_strategy
=
piecewise_decay
--lr
=
0.1
--data_dir
=
../../PaddleCV/image_classification/data/ILSVRC2012
--l2_decay
=
3e-5
--model
=
MobileNetV1
python
3
train.py
--batch_size
=
256
--total_images
=
1281167
--class_dim
=
1000
--image_shape
=
3,224,224
--model_save_dir
=
output/
--lr_strategy
=
piecewise_decay
--lr
=
0.1
--data_dir
=
../../PaddleCV/image_classification/data/ILSVRC2012
--l2_decay
=
3e-5
--model
=
MobileNetV1
dygraph/mobilenet/run_sing_v2.sh
浏览文件 @
80cbdf27
export
CUDA_VISIBLE_DEVICES
=
0
python train.py
--batch_size
=
128
--total_images
=
1281167
--class_dim
=
1000
--image_shape
=
3,224,224
--model_save_dir
=
output/
--lr_strategy
=
piecewise_decay
--lr
=
0.1
--data_dir
=
../../PaddleCV/image_classification/data/ILSVRC2012
--model
=
MobileNetV2
python
3
train.py
--batch_size
=
128
--total_images
=
1281167
--class_dim
=
1000
--image_shape
=
3,224,224
--model_save_dir
=
output/
--lr_strategy
=
piecewise_decay
--lr
=
0.1
--data_dir
=
../../PaddleCV/image_classification/data/ILSVRC2012
--model
=
MobileNetV2
dygraph/mobilenet/train.py
浏览文件 @
80cbdf27
...
...
@@ -27,7 +27,7 @@ import paddle.fluid as fluid
from
paddle.fluid.initializer
import
MSRA
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
FC
#
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, FC
from
paddle.fluid.dygraph.base
import
to_variable
from
paddle.fluid
import
framework
...
...
@@ -95,11 +95,10 @@ def train_mobilenet():
net
=
None
if
args
.
model
==
"MobileNetV1"
:
net
=
MobileNetV1
(
"mobilenet_v1"
,
class_dim
=
args
.
class_dim
)
net
=
MobileNetV1
(
class_dim
=
args
.
class_dim
)
para_name
=
'mobilenet_v1_params'
elif
args
.
model
==
"MobileNetV2"
:
net
=
MobileNetV2
(
name
=
"mobilenet_v2"
,
class_dim
=
args
.
class_dim
,
scale
=
1.0
)
net
=
MobileNetV2
(
class_dim
=
args
.
class_dim
,
scale
=
1.0
)
para_name
=
'mobilenet_v2_params'
else
:
print
(
...
...
@@ -107,7 +106,7 @@ def train_mobilenet():
)
exit
()
optimizer
=
create_optimizer
(
args
)
optimizer
=
create_optimizer
(
args
=
args
,
parameter_list
=
net
.
parameters
()
)
if
args
.
use_data_parallel
:
net
=
fluid
.
dygraph
.
parallel
.
DataParallel
(
net
,
strategy
)
train_data_loader
,
train_data
=
utility
.
create_data_loader
(
...
...
dygraph/mobilenet/utils/optimizer.py
浏览文件 @
80cbdf27
...
...
@@ -148,7 +148,8 @@ class Optimizer(object):
"""
def
__init__
(
self
,
args
):
def
__init__
(
self
,
args
,
parameter_list
):
self
.
parameter_list
=
parameter_list
self
.
batch_size
=
args
.
batch_size
self
.
lr
=
args
.
lr
self
.
lr_strategy
=
args
.
lr_strategy
...
...
@@ -175,7 +176,8 @@ class Optimizer(object):
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
learning_rate
,
momentum
=
self
.
momentum_rate
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
self
.
l2_decay
))
regularization
=
fluid
.
regularizer
.
L2Decay
(
self
.
l2_decay
),
parameter_list
=
self
.
parameter_list
)
return
optimizer
def
cosine_decay
(
self
):
...
...
@@ -192,7 +194,8 @@ class Optimizer(object):
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
learning_rate
,
momentum
=
self
.
momentum_rate
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
self
.
l2_decay
))
regularization
=
fluid
.
regularizer
.
L2Decay
(
self
.
l2_decay
),
parameter_list
=
self
.
parameter_list
)
return
optimizer
def
cosine_decay_warmup
(
self
):
...
...
@@ -209,7 +212,8 @@ class Optimizer(object):
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
learning_rate
,
momentum
=
self
.
momentum_rate
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
self
.
l2_decay
))
regularization
=
fluid
.
regularizer
.
L2Decay
(
self
.
l2_decay
),
parameter_list
=
self
.
parameter_list
)
return
optimizer
def
exponential_decay_warmup
(
self
):
...
...
@@ -230,7 +234,8 @@ class Optimizer(object):
regularization
=
fluid
.
regularizer
.
L2Decay
(
self
.
l2_decay
),
momentum
=
self
.
momentum_rate
,
rho
=
0.9
,
epsilon
=
0.001
)
epsilon
=
0.001
,
parameter_list
=
self
.
parameter_list
)
return
optimizer
def
linear_decay
(
self
):
...
...
@@ -246,7 +251,8 @@ class Optimizer(object):
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
learning_rate
,
momentum
=
self
.
momentum_rate
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
self
.
l2_decay
))
regularization
=
fluid
.
regularizer
.
L2Decay
(
self
.
l2_decay
),
parameter_list
=
self
.
parameter_list
)
return
optimizer
...
...
@@ -257,7 +263,8 @@ class Optimizer(object):
an adam_decay optimizer
"""
return
fluid
.
optimizer
.
Adam
(
learning_rate
=
self
.
lr
)
return
fluid
.
optimizer
.
Adam
(
learning_rate
=
self
.
lr
,
parameter_list
=
self
.
parameter_list
)
def
cosine_decay_RMSProp
(
self
):
"""cosine decay with RMSProp optimizer
...
...
@@ -275,7 +282,8 @@ class Optimizer(object):
momentum
=
self
.
momentum_rate
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
self
.
l2_decay
),
# Apply epsilon=1 on ImageNet dataset.
epsilon
=
1
)
epsilon
=
1
,
parameter_list
=
self
.
parameter_list
)
return
optimizer
def
default_decay
(
self
):
...
...
@@ -288,12 +296,13 @@ class Optimizer(object):
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
self
.
lr
,
momentum
=
self
.
momentum_rate
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
self
.
l2_decay
))
regularization
=
fluid
.
regularizer
.
L2Decay
(
self
.
l2_decay
),
parameter_list
=
self
.
parameter_list
)
return
optimizer
def
create_optimizer
(
args
):
Opt
=
Optimizer
(
args
)
def
create_optimizer
(
args
,
parameter_list
):
Opt
=
Optimizer
(
args
,
parameter_list
)
optimizer
=
getattr
(
Opt
,
args
.
lr_strategy
)()
return
optimizer
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录