README_cn.md 14.1 KB
Newer Older
1 2 3 4
# 图像分类以及模型库

---
## 内容
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
- [简介](#简介)
- [快速开始](#快速开始)
    - [安装说明](#安装说明)
    - [数据准备](#数据准备)
    - [模型训练](#模型训练)
    - [参数微调](#参数微调)
    - [模型评估](#模型评估)
    - [模型预测](#模型预测)
- [进阶使用](#进阶使用)
    - [混合精度训练](#混合精度训练)
    - [CE测试](#ce测试)
- [已发布模型及其性能](#已发布模型及其性能)
- [FAQ](#faq)
- [参考文献](#参考文献)
- [版本更新](#版本更新)
- [如何贡献代码](#如何贡献代码)
- [反馈](#反馈)

## 简介
图像分类是计算机视觉的重要领域,它的目标是将图像分类到预定义的标签。近期,许多研究者提出很多不同种类的神经网络,并且极大的提升了分类算法的性能。本页将介绍如何使用PaddlePaddle进行图像分类。
25

26
## 快速开始
27

28 29
### 安装说明
在当前目录下运行样例代码需要python 2.7及以上版本,PadddlePaddle Fluid v1.5或以上的版本。如果你的运行环境中的PaddlePaddle低于此版本,请根据 [installation document](http://paddlepaddle.org/documentation/docs/zh/1.4/beginners_guide/install/index_cn.html) 中的说明来更新PaddlePaddle。
R
ruri 已提交
30

31
### 数据准备
32 33 34 35 36 37 38 39 40 41 42 43 44 45

下面给出了ImageNet分类任务的样例,首先,通过如下的方式进行数据的准备:
```
cd data/ILSVRC2012/
sh download_imagenet2012.sh
```
```download_imagenet2012.sh```脚本中,通过下面三步来准备数据:

**步骤一:** 首先在```image-net.org```网站上完成注册,用于获得一对```Username``````AccessKey```

**步骤二:** 从ImageNet官网下载ImageNet-2012的图像数据。训练以及验证数据集会分别被下载到"train" 和 "val" 目录中。请注意,ImaegNet数据的大小超过40GB,下载非常耗时;已经自行下载ImageNet的用户可以直接将数据组织放置到```data/ILSVRC2012```

**步骤三:** 下载训练与验证集合对应的标签文件。下面两个文件分别包含了训练集合与验证集合中图像的标签:

46
* train_list.txt: ImageNet-2012训练集合的标签文件,每一行采用"空格"分隔图像路径与标注,例如:
47 48 49
```
train/n02483708/n02483708_2436.jpeg 369
```
50
* val_list.txt: ImageNet-2012验证集合的标签文件,每一行采用"空格"分隔图像路径与标注,例如:
51 52 53
```
val/ILSVRC2012_val_00000001.jpeg 65
```
54
注意:可能需要根据本地环境调整reader.py相关路径来正确读取数据。
55

56
### 模型训练
57 58 59 60 61 62 63 64 65 66 67

数据准备完毕后,可以通过如下的方式启动训练:
```
python train.py \
       --model=SE_ResNeXt50_32x4d \
       --batch_size=32 \
       --total_images=1281167 \
       --class_dim=1000 \
       --image_shape=3,224,224 \
       --model_save_dir=output/ \
       --with_mem_opt=False \
68
       --with_inplace=True \
69 70 71 72
       --lr_strategy=piecewise_decay \
       --lr=0.1
```
**参数说明:**
73

74 75 76 77 78 79 80 81 82
* **model**: 模型名称, 默认值: "SE_ResNeXt50_32x4d"
* **num_epochs**: 训练回合数,默认值: 120
* **batch_size**: 批大小,默认值: 256
* **use_gpu**: 是否在GPU上运行,默认值: True
* **total_images**: 图片数,ImageNet2012默认值: 1281167.
* **class_dim**: 类别数,默认值: 1000
* **image_shape**: 图片大小,默认值: "3,224,224"
* **model_save_dir**: 模型存储路径,默认值: "output/"
* **with_mem_opt**: 是否开启显存优化,默认值: False
83
* **with_inplace**: 是否开启inplace显存优化,默认值: True
84 85 86 87 88 89 90 91
* **lr_strategy**: 学习率变化策略,默认值: "piecewise_decay"
* **lr**: 初始学习率,默认值: 0.1
* **pretrained_model**: 预训练模型路径,默认值: None
* **checkpoint**: 用于继续训练的检查点(指定具体模型存储路径,如"output/SE_ResNeXt50_32x4d/100/"),默认值: None
* **fp16**: 是否开启混合精度训练,默认值: False
* **scale_loss**: 调整混合训练的loss scale值,默认值: 1.0
* **l2_decay**: l2_decay值,默认值: 1e-4
* **momentum_rate**: momentum_rate值,默认值: 0.9
92 93 94 95 96 97 98 99 100 101 102
* **use_label_smoothing**: 是否对数据进行label smoothing处理,默认值:False
* **label_smoothing_epsilon**: label_smoothing的epsilon值,默认值:0.2
* **lower_scale**: 数据随机裁剪处理时的lower scale值, upper scale值固定为1.0,默认值:0.08
* **lower_ratio**: 数据随机裁剪处理时的lower ratio值,默认值:3./4.
* **upper_ration**: 数据随机裁剪处理时的upper ratio值,默认值:4./3.
* **resize_short_size**: 指定数据处理时改变图像大小的短边值,默认值: 256
* **use_mixup**: 是否对数据进行mixup处理,默认值:False
* **mixup_alpha**: 指定mixup处理时的alpha值,默认值: 0.2
* **is_distill**: 是否进行蒸馏训练,默认值: False

**在```run.sh```中有用于训练的脚本.**
103

104
**数据读取器说明:** 数据读取器定义在PIL:```reader.py```和CV2:```reader_cv2.py```文件中,现在默认基于cv2的数据读取器, 在[训练阶段](#模型训练), 默认采用的增广方式是随机裁剪与水平翻转, 而在[模型评估](#模型评估)[模型预测](#模型预测)阶段用的默认方式是中心裁剪。当前支持的数据增广方式有:
105 106

* 旋转
107
* 颜色抖动(cv2暂未实现)
108 109 110 111 112
* 随机裁剪
* 中心裁剪
* 长宽调整
* 水平翻转

113
### 参数微调
114

115
参数微调是指在特定任务上微调已训练模型的参数。可以下载[已有模型及其性能](#已有模型及其性能)并且设置```path_to_pretrain_model```为模型所在路径,微调一个模型可以采用如下的命令:
116
```
117 118
python train.py \
       --pretrained_model=${path_to_pretrain_model}
119
```
120
注意:根据具体模型和任务添加并调整其他参数
121

122 123
### 模型评估
模型评估是指对训练完毕的模型评估各类性能指标。可以下载[已有模型及其性能](#已有模型及其性能)并且设置```path_to_pretrain_model```为模型所在路径。运行如下的命令,可以获得模型top-1/top-5精度:
124 125 126 127
```
python eval.py \
       --pretrained_model=${path_to_pretrain_model}
```
128
注意:根据具体模型和任务添加并调整其他参数
129

130 131
### 模型预测
模型预测可以获取一个模型的预测分数或者图像的特征,可以下载[已有模型及其性能](#已有模型及其性能)并且设置```path_to_pretrain_model```为模型所在路径。运行如下的命令获得预测分数,:
132 133 134 135
```
python infer.py \
       --pretrained_model=${path_to_pretrain_model}
```
136 137 138 139 140 141 142 143 144 145 146 147 148 149
注意:根据具体模型和任务添加并调整其他参数


##进阶使用

### 混合精度训练

可以通过开启`--fp16=True`启动混合精度训练,这样训练过程会使用float16数据,并输出float32的模型参数("master"参数)。您可能需要同时传入`--scale_loss`来解决fp16训练的精度问题,通常传入`--scale_loss=8.0`即可。

注意,目前混合精度训练不能和内存优化功能同时使用,所以需要传`--with_mem_opt=False`这个参数来禁用内存优化功能。

### CE测试

注意:CE相关代码仅用于内部测试,enable_ce默认设置False。
150

151 152

## 已发布模型及其性能
153
表格中列出了在models目录下目前支持的图像分类模型,并且给出了已完成训练的模型在ImageNet-2012验证集合上的top-1/top-5精度,以及Paddle Fluid和Paddle TensorRT基于动态链接库的预测时间(测
154 155 156 157 158 159 160 161
试GPU型号为Tesla P4)。由于Paddle TensorRT对ShuffleNetV2使用的激活函数swish,MobileNetV2使用的激活函数relu6不支持,因此预测加速不明显。可以通过点击相应模型的名称下载对应的预训练模型。

- 注意
    1:ResNet50_vd_v2是ResNet50_vd蒸馏版本。
    2:除了InceptionV4采用的输入图像的分辨率为299x299,其余模型测试时使用的分辨率均为224x224。
    3:调用动态链接库预测时需要将训练模型转换为二进制模型

    ```python infer.py --save_inference=True```
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

|model | top-1/top-5 accuracy(CV2) | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |
|[AlexNet](http://paddle-imagenet-models-name.bj.bcebos.com/AlexNet_pretrained.tar) | 56.72%/79.17% | 3.083 | 2.728 |
|[VGG11](https://paddle-imagenet-models-name.bj.bcebos.com/VGG11_pretrained.tar) | 69.28%/89.09% | 8.223 | 6.821 |
|[VGG13](https://paddle-imagenet-models-name.bj.bcebos.com/VGG13_pretrained.tar) | 70.02%/89.42% | 9.512 | 7.783 |
|[VGG16](https://paddle-imagenet-models-name.bj.bcebos.com/VGG16_pretrained.tar) | 72.00%/90.69% | 11.315 | 9.067 |
|[VGG19](https://paddle-imagenet-models-name.bj.bcebos.com/VGG19_pretrained.tar) | 72.56%/90.93% | 13.096 | 10.388 |
|[MobileNetV1](http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar) | 70.99%/89.68% | 2.609 | 1.615 |
|[MobileNetV2](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar) | 72.15%/90.65% | 4.546 | 5.278 |
|[ResNet18](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_pretrained.tar) | 70.98%/89.92% | 3.456 | 2.484 |
|[ResNet34](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar) | 74.57%/92.14% | 5.668 | 3.767 |
|[ResNet50](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar) | 76.50%/93.00% | 8.787 | 5.434 |
|[ResNet50_vc](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vc_pretrained.tar) |78.35%/94.03% | 9.013 | 5.463 |
|[ResNet50_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar) | 79.12%/94.44% | 9.058 | 5.510 |
|[ResNet50_vd_v2](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_v2_pretrained.tar) | 79.84%/94.93% | 9.058 | 5.510 |
|[ResNet101](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar) | 77.56%/93.64% | 15.447 | 8.779 |
|[ResNet101_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar) | 79.44%/94.47% | 15.685 | 8.878 |
|[ResNet152](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_pretrained.tar) | 78.26%/93.96% | 21.816 | 12.148 |
|[ResNet152_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_vd_pretrained.tar) | 80.59%/95.30% | 22.041 | 12.259 |
|[ResNet200_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet200_vd_pretrained.tar) | 80.93%/95.33% | 28.015 | 15.278 |
|[ResNeXt101_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_64x4d_pretrained.tar) | 79.35%/94.52% | 41.073 |  38.736 |
|[ResNeXt101_vd_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_64x4d_pretrained.tar) | 80.78%/95.20% | 42.277 | 40.929 |
|[SE_ResNeXt50_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt50_32x4d_pretrained.tar) | 78.44%/93.96% | 14.916 | 12.126 |
|[SE_ResNeXt101_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt101_32x4d_pretrained.tar) | 79.12%/94.20% | 30.085 | 24.110 |
|[SE154_vd](https://paddle-imagenet-models-name.bj.bcebos.com/SE154_vd_pretrained.tar) | 81.40%/95.48% | 71.892 | 64.855 |
188
|[GoogLeNet](https://paddle-imagenet-models-name.bj.bcebos.com/GoogleNet_pretrained.tar) | 70.70%/89.66% | 6.528 | 3.076 |
189 190
|[ShuffleNetV2](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_pretrained.tar) | 70.03%/89.17% | 6.078 | 6.282 |
|[InceptionV4](https://paddle-imagenet-models-name.bj.bcebos.com/InceptionV4_pretrained.tar) | 80.77%/95.26% | 32.413 | 18.154 |
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222


## FAQ

**Q:** 加载预训练模型报错,Enforce failed. Expected x_dims[1] == labels_dims[1], but received x_dims[1]:1000 != labels_dims[1]:6.

**A:** 维度对不上,删掉预训练参数中的FC

## 参考文献
- AlexNet: [imagenet-classification-with-deep-convolutional-neural-networks](https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf), Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton
- ResNet: [Deep Residual Learning for Image Recognitio](https://arxiv.org/abs/1512.03385), Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
- ResNeXt: [Aggregated Residual Transformations for Deep Neural Networks](https://arxiv.org/abs/1611.05431), Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, Kaiming He
- SeResNeXt: [Squeeze-and-Excitation Networks](https://arxiv.org/pdf/1709.01507.pdf)Jie Hu, Li Shen, Samuel Albanie
- ShuffleNetV1: [ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices](https://arxiv.org/abs/1707.01083), Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, Jian Sun
- ShuffleNetV2: [ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design](https://arxiv.org/abs/1807.11164), Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, Jian Sun
- MobileNetV1: [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861), Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam
- MobileNetV2: [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/pdf/1801.04381v4.pdf), Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen
- VGG: [Very Deep Convolutional Networks for Large-scale Image Recognition](https://arxiv.org/pdf/1409.1556), Karen Simonyan, Andrew Zisserman
- GoogLeNet: [Going Deeper with Convolutions](https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf), Christian Szegedy1, Wei Liu2, Yangqing Jia
- InceptionV4: [Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning](https://arxiv.org/abs/1602.07261), Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi

## 版本更新
- 2018/12/03 **Stage1**: 更新AlexNet,ResNet50,ResNet101,MobileNetV1
- 2018/12/23 **Stage2**: 更新VGG系列 SeResNeXt50_32x4d,SeResNeXt101_32x4d,ResNet152
- 2019/01/31 更新MobileNetV2
- 2019/04/01 **Stage3**: 更新ResNet18,ResNet34,GoogLeNet,ShuffleNetV2
- 2019/06/12 **Stage4**: 更新ResNet50_vc,ResNet50_vd,ResNet101_vd,ResNet152_vd,ResNet200_vd,SE154_vd InceptionV4,ResNeXt101_64x4d,ResNeXt101_vd_64x4d
- 2019/06/22 更新ResNet50_vd_v2

## 如何贡献代码

如果你可以修复某个issue或者增加一个新功能,欢迎给我们提交PR。如果对应的PR被接受了,我们将根据贡献的质量和难度进行打分(0-5分,越高越好)。如果你累计获得了10分,可以联系我们获得面试机会或者为你写推荐信。