README_cn.md 9.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# 图像分类以及模型库
图像分类是计算机视觉的重要领域,它的目标是将图像分类到预定义的标签。近期,许多研究者提出很多不同种类的神经网络,并且极大的提升了分类算法的性能。本页将介绍如何使用PaddlePaddle进行图像分类。

---
## 内容
- [安装](#安装)
- [数据准备](#数据准备)
- [模型训练](#模型训练)
- [混合精度训练](#混合精度训练)
- [参数微调](#参数微调)
- [模型评估](#模型评估)
- [模型预测](#模型预测)
- [已有模型及其性能](#已有模型及其性能)

## 安装

在当前目录下运行样例代码需要PadddlePaddle Fluid的v0.13.0或以上的版本。如果你的运行环境中的PaddlePaddle低于此版本,请根据 [installation document](http://paddlepaddle.org/documentation/docs/zh/1.3/beginners_guide/install/index_cn.html) 中的说明来更新PaddlePaddle。

R
ruri 已提交
19 20
注意:由于windows不支持nccl,当使用Windows GPU环境时候,需要将示例代码中的[fluid.ParallelExecutor](http://paddlepaddle.org/documentation/docs/zh/1.4/api_cn/fluid_cn.html#parallelexecutor)替换为[fluid.Executor](http://paddlepaddle.org/documentation/docs/zh/1.4/api_cn/fluid_cn.html#executor)

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
## 数据准备

下面给出了ImageNet分类任务的样例,首先,通过如下的方式进行数据的准备:
```
cd data/ILSVRC2012/
sh download_imagenet2012.sh
```
```download_imagenet2012.sh```脚本中,通过下面三步来准备数据:

**步骤一:** 首先在```image-net.org```网站上完成注册,用于获得一对```Username``````AccessKey```

**步骤二:** 从ImageNet官网下载ImageNet-2012的图像数据。训练以及验证数据集会分别被下载到"train" 和 "val" 目录中。请注意,ImaegNet数据的大小超过40GB,下载非常耗时;已经自行下载ImageNet的用户可以直接将数据组织放置到```data/ILSVRC2012```

**步骤三:** 下载训练与验证集合对应的标签文件。下面两个文件分别包含了训练集合与验证集合中图像的标签:

* *train_list.txt*: ImageNet-2012训练集合的标签文件,每一行采用"空格"分隔图像路径与标注,例如:
```
train/n02483708/n02483708_2436.jpeg 369
train/n03998194/n03998194_7015.jpeg 741
train/n04523525/n04523525_38118.jpeg 884
...
```
* *val_list.txt*: ImageNet-2012验证集合的标签文件,每一行采用"空格"分隔图像路径与标注,例如:
```
val/ILSVRC2012_val_00000001.jpeg 65
val/ILSVRC2012_val_00000002.jpeg 970
val/ILSVRC2012_val_00000003.jpeg 230
...
```
注意:需要根据本地环境调整reader.py相关路径来正确读取数据。

## 模型训练

数据准备完毕后,可以通过如下的方式启动训练:
```
python train.py \
       --model=SE_ResNeXt50_32x4d \
       --batch_size=32 \
       --total_images=1281167 \
       --class_dim=1000 \
       --image_shape=3,224,224 \
       --model_save_dir=output/ \
       --with_mem_opt=False \
64
       --with_inplace=True \
65 66 67 68 69 70 71 72 73 74 75 76 77
       --lr_strategy=piecewise_decay \
       --lr=0.1
```
**参数说明:**
* **model**: 模型名称, 默认值: "SE_ResNeXt50_32x4d"
* **num_epochs**: 训练回合数,默认值: 120
* **batch_size**: 批大小,默认值: 256
* **use_gpu**: 是否在GPU上运行,默认值: True
* **total_images**: 图片数,ImageNet2012默认值: 1281167.
* **class_dim**: 类别数,默认值: 1000
* **image_shape**: 图片大小,默认值: "3,224,224"
* **model_save_dir**: 模型存储路径,默认值: "output/"
* **with_mem_opt**: 是否开启显存优化,默认值: False
78
* **with_inplace**: 是否开启inplace显存优化,默认值: True
79 80 81 82 83 84 85 86 87 88 89
* **lr_strategy**: 学习率变化策略,默认值: "piecewise_decay"
* **lr**: 初始学习率,默认值: 0.1
* **pretrained_model**: 预训练模型路径,默认值: None
* **checkpoint**: 用于继续训练的检查点(指定具体模型存储路径,如"output/SE_ResNeXt50_32x4d/100/"),默认值: None
* **fp16**: 是否开启混合精度训练,默认值: False
* **scale_loss**: 调整混合训练的loss scale值,默认值: 1.0
* **l2_decay**: l2_decay值,默认值: 1e-4
* **momentum_rate**: momentum_rate值,默认值: 0.9

```run.sh```中有用于训练的脚本.

90
**数据读取器说明:** 数据读取器定义在```reader.py``````reader_cv2.py```中。一般, CV2可以提高数据读取速度, PIL reader可以得到相对更高的精度, 我们现在默认基于cv2的数据读取器, 在[训练阶段](#模型训练), 默认采用的增广方式是随机裁剪与水平翻转, 而在[模型评估](#模型评估)[模型预测](#模型预测)阶段用的默认方式是中心裁剪。当前支持的数据增广方式有:
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
* 旋转
* 颜色抖动
* 随机裁剪
* 中心裁剪
* 长宽调整
* 水平翻转

## 混合精度训练

可以通过开启`--fp16=True`启动混合精度训练,这样训练过程会使用float16数据,并输出float32的模型参数("master"参数)。您可能需要同时传入`--scale_loss`来解决fp16训练的精度问题,通常传入`--scale_loss=8.0`即可。

注意,目前混合精度训练不能和内存优化功能同时使用,所以需要传`--with_mem_opt=False`这个参数来禁用内存优化功能。

## 参数微调

参数微调是指在特定任务上微调已训练模型的参数。通过初始化```path_to_pretrain_model```,微调一个模型可以采用如下的命令:
```
python train.py
       --model=SE_ResNeXt50_32x4d \
       --pretrained_model=${path_to_pretrain_model} \
       --batch_size=32 \
       --total_images=1281167 \
       --class_dim=1000 \
       --image_shape=3,224,224 \
       --model_save_dir=output/ \
       --with_mem_opt=True \
       --lr_strategy=piecewise_decay \
       --lr=0.1
```

## 模型评估
模型评估是指对训练完毕的模型评估各类性能指标。用户可以下载[已有模型及其性能](#已有模型及其性能)并且设置```path_to_pretrain_model```为模型所在路径。运行如下的命令,可以获得一个模型top-1/top-5精度:
```
python eval.py \
       --model=SE_ResNeXt50_32x4d \
       --batch_size=32 \
       --class_dim=1000 \
       --image_shape=3,224,224 \
       --with_mem_opt=True \
       --pretrained_model=${path_to_pretrain_model}
```

## 模型预测
模型预测可以获取一个模型的预测分数或者图像的特征:
```
python infer.py \
       --model=SE_ResNeXt50_32x4d \
       --class_dim=1000 \
       --image_shape=3,224,224 \
       --with_mem_opt=True \
       --pretrained_model=${path_to_pretrain_model}
```

## 已有模型及其性能
表格中列出了在```models```目录下支持的图像分类模型,并且给出了已完成训练的模型在ImageNet-2012验证集合上的top-1/top-5精度,
146
可以通过点击相应模型的名称下载相应预训练模型。其中ResNet50_vd_v2是ResNet50_vd的蒸馏版本。
147

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
- Released models: specify parameter names

|model | top-1/top-5 accuracy(CV2) |
|- |:-: |
|[AlexNet](http://paddle-imagenet-models-name.bj.bcebos.com/AlexNet_pretrained.tar) | 56.72%/79.17% |
|[VGG11](https://paddle-imagenet-models-name.bj.bcebos.com/VGG11_pretrained.tar) | 69.28%/89.09% |
|[VGG13](https://paddle-imagenet-models-name.bj.bcebos.com/VGG13_pretrained.tar) | 70.02%/89.42% |
|[VGG16](https://paddle-imagenet-models-name.bj.bcebos.com/VGG16_pretrained.tar) | 72.00%/90.69% |
|[VGG19](https://paddle-imagenet-models-name.bj.bcebos.com/VGG19_pretrained.tar) | 72.56%/90.93% |
|[MobileNetV1](http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar) | 70.99%/89.68% |
|[MobileNetV2](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar) | 72.15%/90.65% |
|[ResNet18](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_pretrained.tar) | 70.98%/89.92% |
|[ResNet34](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar) | 74.57%/92.14% |
|[ResNet50](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar) | 76.50%/93.00% |
|[ResNet50_vc](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vc_pretrained.tar) |78.35%/94.03% |
|[ResNet50_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar) | 79.12%/94.44% |
164
|[ResNet50_vd_v2](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_v2_pretrained.tar) | 79.84%/94.93% |
165 166 167 168
|[ResNet101](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar) | 77.56%/93.64% |
|[ResNet101_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar) | 79.44%/94.47% |
|[ResNet152](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_pretrained.tar) | 78.26%/93.96% |
|[ResNet152_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_vd_pretrained.tar) | 80.59%/95.30% |
R
ruri 已提交
169
|[ResNet200_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet200_vd_pretrained.tar) | 80.93%/95.33% |
170 171 172 173
|[ResNeXt101_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_64x4d_pretrained.tar) | 79.35%/94.52% |
|[ResNeXt101_vd_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_64x4d_pretrained.tar) | 80.78%/95.20% |
|[SE_ResNeXt50_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt50_32x4d_pretrained.tar) | 78.44%/93.96% |
|[SE_ResNeXt101_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt101_32x4d_pretrained.tar) | 79.12%/94.20% |
R
ruri 已提交
174
|[SE154_vd](https://paddle-imagenet-models-name.bj.bcebos.com/SE154_vd_pretrained.tar) | 81.40%/95.48% |
175 176
|[GoogleNet](https://paddle-imagenet-models-name.bj.bcebos.com/GoogleNet_pretrained.tar) | 70.70%/89.66% |
|[ShuffleNetV2](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_pretrained.tar) | 70.03%/89.17% |
R
ruri 已提交
177
|[InceptionV4](https://paddle-imagenet-models-name.bj.bcebos.com/InceptionV4_pretrained.tar) | 80.77%/95.26% |