test_reinforce_load.py 4.9 KB
Newer Older
P
pkpk 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
import argparse
import gym
import numpy as np
from itertools import count
import math
import paddle
import paddle.fluid as fluid
import paddle.fluid.dygraph.nn as nn
import paddle.fluid.framework as framework

parser = argparse.ArgumentParser(description='PyTorch REINFORCE example')
parser.add_argument(
    '--gamma',
    type=float,
    default=0.99,
    metavar='G',
    help='discount factor (default: 0.99)')
parser.add_argument(
    '--seed',
    type=int,
    default=543,
    metavar='N',
    help='random seed (default: 543)')
parser.add_argument(
    '--render', action='store_true', help='render the environment')
parser.add_argument('--save_dir', type=str, default="./saved_models")
parser.add_argument(
    '--log-interval',
    type=int,
    default=10,
    metavar='N',
    help='interval between training status logs (default: 10)')
args = parser.parse_args()

env = gym.make('CartPole-v0')
env.seed(args.seed)


class Policy(fluid.dygraph.Layer):
    def __init__(self, name_scope):
        super(Policy, self).__init__(name_scope)

        self.affine1 = nn.FC(self.full_name(), size=128)
        self.affine2 = nn.FC(self.full_name(), size=2)
        self.dropout_ratio = 0.6

        self.saved_log_probs = []
        self.rewards = []

    def forward(self, x):
        x = fluid.layers.reshape(x, shape=[1, 4])
        x = self.affine1(x)
        x = fluid.layers.dropout(x, self.dropout_ratio)
        x = fluid.layers.relu(x)
        action_scores = self.affine2(x)

        self._x_for_debug = x

        return fluid.layers.softmax(action_scores, axis=1)


with fluid.dygraph.guard():
    fluid.default_startup_program().random_seed = args.seed
    fluid.default_main_program().random_seed = args.seed
    np.random.seed(args.seed)

    policy = Policy("PolicyModel")

    eps = np.finfo(np.float32).eps.item()
    optimizer = fluid.optimizer.AdamOptimizer(learning_rate=1e-2)

    def get_mean_and_std(values=[]):
        n = 0.
        s = 0.
        for val in values:
            s += val
            n += 1
        mean = s / n

        std = 0.
        for val in values:
            std += (val - mean) * (val - mean)
        std /= n
        std = math.sqrt(std)

        return mean, std

    def sample_action(probs):
        sample = np.random.random()
        idx = 0

        while idx < len(probs) and sample > probs[idx]:
            sample -= probs[idx]
            idx += 1
        mask = [0.] * len(probs)
        mask[idx] = 1.

        return idx, np.array([mask]).astype("float32")

    def choose_best_action(probs):
        idx = 0 if probs[0] > probs[1] else 1
        mask = [1., 0.] if idx == 0 else [0., 1.]

        return idx, np.array([mask]).astype("float32")

    def select_action(state):
        state = fluid.dygraph.base.to_variable(state)
        state.stop_gradient = True
        loss_probs = policy(state)
        probs = loss_probs.numpy()

        action, _mask = sample_action(probs[0])

        mask = fluid.dygraph.base.to_variable(_mask)
        mask.stop_gradient = True

        loss_probs = fluid.layers.log(loss_probs)
        loss_probs = fluid.layers.elementwise_mul(loss_probs, mask)
        loss_probs = fluid.layers.reduce_sum(loss_probs, dim=-1)

        policy.saved_log_probs.append(loss_probs)

        return action

    def finish_episode():
        R = 0
        policy_loss = []
        returns = []
        for r in policy.rewards[::-1]:
            R = r + args.gamma * R
            returns.insert(0, R)

        mean, std = get_mean_and_std(returns)

        returns = np.array(returns).astype("float32")
        returns = (returns - mean) / (std + eps)

        for log_prob, R in zip(policy.saved_log_probs, returns):
            log_prob_numpy = log_prob.numpy()

            R_numpy = np.ones_like(log_prob_numpy).astype("float32")
            _R = -1 * R * R_numpy
            _R = fluid.dygraph.base.to_variable(_R)
            _R.stop_gradient = True
            curr_loss = fluid.layers.elementwise_mul(_R, log_prob)
            policy_loss.append(curr_loss)

        policy_loss = fluid.layers.concat(policy_loss)
        policy_loss = fluid.layers.reduce_sum(policy_loss)

        policy_loss.backward()
        optimizer.minimize(policy_loss)

        dy_grad = policy._x_for_debug.gradient()

        policy.clear_gradients()
        del policy.rewards[:]
        del policy.saved_log_probs[:]

        return returns

    running_reward = 10
    state, ep_reward = env.reset(), 0
164 165
    model_dict, _ = fluid.load_dygraph(args.save_dir)
    policy.set_dict(model_dict)
P
pkpk 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181

    for t in range(1, 10000):  # Don't infinite loop while learning
        state = np.array(state).astype("float32")
        action = select_action(state)
        state, reward, done, _ = env.step(action)

        if args.render:
            env.render()

        policy.rewards.append(reward)
        ep_reward += reward

        if done:
            break

    print('Test reward: {:.2f}'.format(ep_reward))