Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
1229fb14
M
models
项目概览
PaddlePaddle
/
models
大约 2 年 前同步成功
通知
232
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1229fb14
编写于
5月 23, 2019
作者:
P
pkpk
提交者:
GitHub
5月 23, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
test=develop (#2300)
上级
6c0b2ab6
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
386 addition
and
1 deletion
+386
-1
dygraph/reinforcement_learning/actor_critic.py
dygraph/reinforcement_learning/actor_critic.py
+5
-0
dygraph/reinforcement_learning/reinforce.py
dygraph/reinforcement_learning/reinforce.py
+7
-1
dygraph/reinforcement_learning/test_actor_critic_load.py
dygraph/reinforcement_learning/test_actor_critic_load.py
+194
-0
dygraph/reinforcement_learning/test_reinforce_load.py
dygraph/reinforcement_learning/test_reinforce_load.py
+180
-0
未找到文件。
dygraph/reinforcement_learning/actor_critic.py
浏览文件 @
1229fb14
...
...
@@ -24,6 +24,7 @@ parser.add_argument(
help
=
'random seed (default: 543)'
)
parser
.
add_argument
(
'--render'
,
action
=
'store_true'
,
help
=
'render the environment'
)
parser
.
add_argument
(
'--save_dir'
,
type
=
str
,
default
=
"./saved_models_ac"
)
parser
.
add_argument
(
'--log-interval'
,
type
=
int
,
...
...
@@ -61,6 +62,9 @@ class Policy(fluid.dygraph.Layer):
with
fluid
.
dygraph
.
guard
():
fluid
.
default_startup_program
().
random_seed
=
args
.
seed
fluid
.
default_main_program
().
random_seed
=
args
.
seed
np
.
random
.
seed
(
args
.
seed
)
policy
=
Policy
(
"PolicyModel"
)
eps
=
np
.
finfo
(
np
.
float32
).
eps
.
item
()
...
...
@@ -196,4 +200,5 @@ with fluid.dygraph.guard():
print
(
"Solved! Running reward is now {} and "
"the last episode runs to {} time steps!"
.
format
(
running_reward
,
t
))
fluid
.
dygraph
.
save_persistables
(
policy
.
state_dict
(),
args
.
save_dir
)
break
dygraph/reinforcement_learning/reinforce.py
浏览文件 @
1229fb14
...
...
@@ -23,6 +23,7 @@ parser.add_argument(
help
=
'random seed (default: 543)'
)
parser
.
add_argument
(
'--render'
,
action
=
'store_true'
,
help
=
'render the environment'
)
parser
.
add_argument
(
'--save_dir'
,
type
=
str
,
default
=
"./saved_models"
)
parser
.
add_argument
(
'--log-interval'
,
type
=
int
,
...
...
@@ -59,6 +60,10 @@ class Policy(fluid.dygraph.Layer):
with
fluid
.
dygraph
.
guard
():
fluid
.
default_startup_program
().
random_seed
=
args
.
seed
fluid
.
default_main_program
().
random_seed
=
args
.
seed
np
.
random
.
seed
(
args
.
seed
)
policy
=
Policy
(
"PolicyModel"
)
eps
=
np
.
finfo
(
np
.
float32
).
eps
.
item
()
...
...
@@ -176,9 +181,10 @@ with fluid.dygraph.guard():
if
i_episode
%
args
.
log_interval
==
0
:
print
(
'Episode {}
\t
Last reward: {:.2f}
\t
Average reward: {:.2f}'
.
format
(
i_episode
,
ep_reward
,
running_reward
))
#print(returns)
if
running_reward
>
env
.
spec
.
reward_threshold
:
print
(
"Solved! Running reward is now {} and "
"the last episode runs to {} time steps!"
.
format
(
running_reward
,
t
))
fluid
.
dygraph
.
save_persistables
(
policy
.
state_dict
(),
args
.
save_dir
)
break
dygraph/reinforcement_learning/test_actor_critic_load.py
0 → 100644
浏览文件 @
1229fb14
import
argparse
import
gym
import
numpy
as
np
from
itertools
import
count
from
collections
import
namedtuple
import
math
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.dygraph.nn
as
nn
import
paddle.fluid.framework
as
framework
parser
=
argparse
.
ArgumentParser
(
description
=
'PyTorch REINFORCE example'
)
parser
.
add_argument
(
'--gamma'
,
type
=
float
,
default
=
0.99
,
metavar
=
'G'
,
help
=
'discount factor (default: 0.99)'
)
parser
.
add_argument
(
'--seed'
,
type
=
int
,
default
=
543
,
metavar
=
'N'
,
help
=
'random seed (default: 543)'
)
parser
.
add_argument
(
'--render'
,
action
=
'store_true'
,
help
=
'render the environment'
)
parser
.
add_argument
(
'--save_dir'
,
type
=
str
,
default
=
"./saved_models_ac"
)
parser
.
add_argument
(
'--log-interval'
,
type
=
int
,
default
=
10
,
metavar
=
'N'
,
help
=
'interval between training status logs (default: 10)'
)
args
=
parser
.
parse_args
()
env
=
gym
.
make
(
'CartPole-v0'
)
env
.
seed
(
args
.
seed
)
SavedAction
=
namedtuple
(
'SavedAction'
,
[
'log_prob'
,
'value'
])
class
Policy
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
name_scope
):
super
(
Policy
,
self
).
__init__
(
name_scope
)
self
.
affine1
=
nn
.
FC
(
self
.
full_name
(),
size
=
128
)
self
.
action_head
=
nn
.
FC
(
self
.
full_name
(),
size
=
2
)
self
.
value_head
=
nn
.
FC
(
self
.
full_name
(),
size
=
1
)
self
.
saved_actions
=
[]
self
.
rewards
=
[]
def
forward
(
self
,
x
):
x
=
fluid
.
layers
.
reshape
(
x
,
shape
=
[
1
,
4
])
x
=
self
.
affine1
(
x
)
x
=
fluid
.
layers
.
relu
(
x
)
action_scores
=
self
.
action_head
(
x
)
state_values
=
self
.
value_head
(
x
)
return
fluid
.
layers
.
softmax
(
action_scores
,
axis
=-
1
),
state_values
with
fluid
.
dygraph
.
guard
():
fluid
.
default_startup_program
().
random_seed
=
args
.
seed
fluid
.
default_main_program
().
random_seed
=
args
.
seed
np
.
random
.
seed
(
args
.
seed
)
policy
=
Policy
(
"PolicyModel"
)
eps
=
np
.
finfo
(
np
.
float32
).
eps
.
item
()
optimizer
=
fluid
.
optimizer
.
AdamOptimizer
(
learning_rate
=
3e-2
)
def
get_mean_and_std
(
values
=
[]):
n
=
0.
s
=
0.
for
val
in
values
:
s
+=
val
n
+=
1
mean
=
s
/
n
std
=
0.
for
val
in
values
:
std
+=
(
val
-
mean
)
*
(
val
-
mean
)
std
/=
n
std
=
math
.
sqrt
(
std
)
return
mean
,
std
def
sample_action
(
probs
):
sample
=
np
.
random
.
random
()
idx
=
0
while
idx
<
len
(
probs
)
and
sample
>
probs
[
idx
]:
sample
-=
probs
[
idx
]
idx
+=
1
mask
=
[
0.
]
*
len
(
probs
)
mask
[
idx
]
=
1.
return
idx
,
np
.
array
([
mask
]).
astype
(
"float32"
)
def
choose_best_action
(
probs
):
idx
=
0
if
probs
[
0
]
>
probs
[
1
]
else
1
mask
=
[
1.
,
0.
]
if
idx
==
0
else
[
0.
,
1.
]
return
idx
,
np
.
array
([
mask
]).
astype
(
"float32"
)
def
select_action
(
state
):
state
=
fluid
.
dygraph
.
base
.
to_variable
(
state
)
state
.
stop_gradient
=
True
probs
,
state_value
=
policy
(
state
)
np_probs
=
probs
.
numpy
()
action
,
_mask
=
sample_action
(
np_probs
[
0
])
mask
=
fluid
.
dygraph
.
base
.
to_variable
(
_mask
)
mask
.
stop_gradient
=
True
loss_probs
=
fluid
.
layers
.
log
(
probs
)
loss_probs
=
fluid
.
layers
.
elementwise_mul
(
loss_probs
,
mask
)
loss_probs
=
fluid
.
layers
.
reduce_sum
(
loss_probs
,
dim
=-
1
)
policy
.
saved_actions
.
append
(
SavedAction
(
loss_probs
,
state_value
))
return
action
def
finish_episode
():
R
=
0
saved_actions
=
policy
.
saved_actions
policy_losses
=
[]
value_losses
=
[]
returns
=
[]
for
r
in
policy
.
rewards
[::
-
1
]:
R
=
r
+
args
.
gamma
*
R
returns
.
insert
(
0
,
R
)
mean
,
std
=
get_mean_and_std
(
returns
)
returns
=
np
.
array
(
returns
).
astype
(
"float32"
)
returns
=
(
returns
-
mean
)
/
(
std
+
eps
)
for
(
log_prob
,
value
),
R
in
zip
(
saved_actions
,
returns
):
advantage
=
R
-
value
[
0
][
0
]
log_prob_numpy
=
log_prob
.
numpy
()
R_numpy
=
np
.
ones_like
(
log_prob_numpy
).
astype
(
"float32"
)
_R
=
-
1
*
advantage
*
R_numpy
_R
=
fluid
.
dygraph
.
base
.
to_variable
(
_R
)
_R
.
stop_gradient
=
True
policy_loss
=
fluid
.
layers
.
elementwise_mul
(
_R
,
log_prob
)
policy_losses
.
append
(
policy_loss
)
_R2
=
np
.
ones_like
(
value
.
numpy
()).
astype
(
"float32"
)
*
R
_R2
=
fluid
.
dygraph
.
base
.
to_variable
(
_R2
)
_R2
.
stop_gradient
=
True
value_loss
=
fluid
.
layers
.
smooth_l1
(
value
,
_R2
,
sigma
=
1.0
)
value_losses
.
append
(
value_loss
)
all_policy_loss
=
fluid
.
layers
.
concat
(
policy_losses
)
all_policy_loss
=
fluid
.
layers
.
reduce_sum
(
all_policy_loss
)
all_value_loss
=
fluid
.
layers
.
concat
(
value_losses
)
all_value_loss
=
fluid
.
layers
.
reduce_sum
(
all_value_loss
)
loss
=
all_policy_loss
+
all_value_loss
loss
.
backward
()
optimizer
.
minimize
(
loss
)
policy
.
clear_gradients
()
del
policy
.
rewards
[:]
del
policy
.
saved_actions
[:]
return
returns
running_reward
=
10
policy
.
load_dict
(
fluid
.
dygraph
.
load_persistables
(
args
.
save_dir
))
state
,
ep_reward
=
env
.
reset
(),
0
for
t
in
range
(
1
,
10000
):
# Don't infinite loop while learning
state
=
np
.
array
(
state
).
astype
(
"float32"
)
action
=
select_action
(
state
)
state
,
reward
,
done
,
_
=
env
.
step
(
action
)
if
args
.
render
:
env
.
render
()
policy
.
rewards
.
append
(
reward
)
ep_reward
+=
reward
if
done
:
break
print
(
'Last reward: {:.2f}'
.
format
(
ep_reward
))
dygraph/reinforcement_learning/test_reinforce_load.py
0 → 100644
浏览文件 @
1229fb14
import
argparse
import
gym
import
numpy
as
np
from
itertools
import
count
import
math
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.dygraph.nn
as
nn
import
paddle.fluid.framework
as
framework
parser
=
argparse
.
ArgumentParser
(
description
=
'PyTorch REINFORCE example'
)
parser
.
add_argument
(
'--gamma'
,
type
=
float
,
default
=
0.99
,
metavar
=
'G'
,
help
=
'discount factor (default: 0.99)'
)
parser
.
add_argument
(
'--seed'
,
type
=
int
,
default
=
543
,
metavar
=
'N'
,
help
=
'random seed (default: 543)'
)
parser
.
add_argument
(
'--render'
,
action
=
'store_true'
,
help
=
'render the environment'
)
parser
.
add_argument
(
'--save_dir'
,
type
=
str
,
default
=
"./saved_models"
)
parser
.
add_argument
(
'--log-interval'
,
type
=
int
,
default
=
10
,
metavar
=
'N'
,
help
=
'interval between training status logs (default: 10)'
)
args
=
parser
.
parse_args
()
env
=
gym
.
make
(
'CartPole-v0'
)
env
.
seed
(
args
.
seed
)
class
Policy
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
name_scope
):
super
(
Policy
,
self
).
__init__
(
name_scope
)
self
.
affine1
=
nn
.
FC
(
self
.
full_name
(),
size
=
128
)
self
.
affine2
=
nn
.
FC
(
self
.
full_name
(),
size
=
2
)
self
.
dropout_ratio
=
0.6
self
.
saved_log_probs
=
[]
self
.
rewards
=
[]
def
forward
(
self
,
x
):
x
=
fluid
.
layers
.
reshape
(
x
,
shape
=
[
1
,
4
])
x
=
self
.
affine1
(
x
)
x
=
fluid
.
layers
.
dropout
(
x
,
self
.
dropout_ratio
)
x
=
fluid
.
layers
.
relu
(
x
)
action_scores
=
self
.
affine2
(
x
)
self
.
_x_for_debug
=
x
return
fluid
.
layers
.
softmax
(
action_scores
,
axis
=
1
)
with
fluid
.
dygraph
.
guard
():
fluid
.
default_startup_program
().
random_seed
=
args
.
seed
fluid
.
default_main_program
().
random_seed
=
args
.
seed
np
.
random
.
seed
(
args
.
seed
)
policy
=
Policy
(
"PolicyModel"
)
eps
=
np
.
finfo
(
np
.
float32
).
eps
.
item
()
optimizer
=
fluid
.
optimizer
.
AdamOptimizer
(
learning_rate
=
1e-2
)
def
get_mean_and_std
(
values
=
[]):
n
=
0.
s
=
0.
for
val
in
values
:
s
+=
val
n
+=
1
mean
=
s
/
n
std
=
0.
for
val
in
values
:
std
+=
(
val
-
mean
)
*
(
val
-
mean
)
std
/=
n
std
=
math
.
sqrt
(
std
)
return
mean
,
std
def
sample_action
(
probs
):
sample
=
np
.
random
.
random
()
idx
=
0
while
idx
<
len
(
probs
)
and
sample
>
probs
[
idx
]:
sample
-=
probs
[
idx
]
idx
+=
1
mask
=
[
0.
]
*
len
(
probs
)
mask
[
idx
]
=
1.
return
idx
,
np
.
array
([
mask
]).
astype
(
"float32"
)
def
choose_best_action
(
probs
):
idx
=
0
if
probs
[
0
]
>
probs
[
1
]
else
1
mask
=
[
1.
,
0.
]
if
idx
==
0
else
[
0.
,
1.
]
return
idx
,
np
.
array
([
mask
]).
astype
(
"float32"
)
def
select_action
(
state
):
state
=
fluid
.
dygraph
.
base
.
to_variable
(
state
)
state
.
stop_gradient
=
True
loss_probs
=
policy
(
state
)
probs
=
loss_probs
.
numpy
()
action
,
_mask
=
sample_action
(
probs
[
0
])
mask
=
fluid
.
dygraph
.
base
.
to_variable
(
_mask
)
mask
.
stop_gradient
=
True
loss_probs
=
fluid
.
layers
.
log
(
loss_probs
)
loss_probs
=
fluid
.
layers
.
elementwise_mul
(
loss_probs
,
mask
)
loss_probs
=
fluid
.
layers
.
reduce_sum
(
loss_probs
,
dim
=-
1
)
policy
.
saved_log_probs
.
append
(
loss_probs
)
return
action
def
finish_episode
():
R
=
0
policy_loss
=
[]
returns
=
[]
for
r
in
policy
.
rewards
[::
-
1
]:
R
=
r
+
args
.
gamma
*
R
returns
.
insert
(
0
,
R
)
mean
,
std
=
get_mean_and_std
(
returns
)
returns
=
np
.
array
(
returns
).
astype
(
"float32"
)
returns
=
(
returns
-
mean
)
/
(
std
+
eps
)
for
log_prob
,
R
in
zip
(
policy
.
saved_log_probs
,
returns
):
log_prob_numpy
=
log_prob
.
numpy
()
R_numpy
=
np
.
ones_like
(
log_prob_numpy
).
astype
(
"float32"
)
_R
=
-
1
*
R
*
R_numpy
_R
=
fluid
.
dygraph
.
base
.
to_variable
(
_R
)
_R
.
stop_gradient
=
True
curr_loss
=
fluid
.
layers
.
elementwise_mul
(
_R
,
log_prob
)
policy_loss
.
append
(
curr_loss
)
policy_loss
=
fluid
.
layers
.
concat
(
policy_loss
)
policy_loss
=
fluid
.
layers
.
reduce_sum
(
policy_loss
)
policy_loss
.
backward
()
optimizer
.
minimize
(
policy_loss
)
dy_grad
=
policy
.
_x_for_debug
.
gradient
()
policy
.
clear_gradients
()
del
policy
.
rewards
[:]
del
policy
.
saved_log_probs
[:]
return
returns
running_reward
=
10
state
,
ep_reward
=
env
.
reset
(),
0
policy
.
load_dict
(
fluid
.
dygraph
.
load_persistables
(
args
.
save_dir
))
for
t
in
range
(
1
,
10000
):
# Don't infinite loop while learning
state
=
np
.
array
(
state
).
astype
(
"float32"
)
action
=
select_action
(
state
)
state
,
reward
,
done
,
_
=
env
.
step
(
action
)
if
args
.
render
:
env
.
render
()
policy
.
rewards
.
append
(
reward
)
ep_reward
+=
reward
if
done
:
break
print
(
'Test reward: {:.2f}'
.
format
(
ep_reward
))
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录