modeling.py 12.1 KB
Newer Older
Z
Zeyu Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.nn as nn

from .. import PretrainedModel, register_base_model

__all__ = [
    'RobertaModel',
K
kinghuin 已提交
22
    'RobertaPretrainedModel',
Z
Zeyu Chen 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
    'RobertaForSequenceClassification',
    'RobertaForTokenClassification',
    'RobertaForQuestionAnswering',
]


class RobertaEmbeddings(nn.Layer):
    """
    Include embeddings from word, position and token_type embeddings
    """

    def __init__(self,
                 vocab_size,
                 hidden_size=768,
                 hidden_dropout_prob=0.1,
                 max_position_embeddings=512,
                 type_vocab_size=16,
                 pad_token_id=0):
        super(RobertaEmbeddings, self).__init__()
        self.word_embeddings = nn.Embedding(
            vocab_size, hidden_size, padding_idx=pad_token_id)
        self.position_embeddings = nn.Embedding(max_position_embeddings,
                                                hidden_size)
        self.token_type_embeddings = nn.Embedding(type_vocab_size, hidden_size)
        self.layer_norm = nn.LayerNorm(hidden_size)
        self.dropout = nn.Dropout(hidden_dropout_prob)

    def forward(self, input_ids, token_type_ids=None, position_ids=None):
        if position_ids is None:
            # maybe need use shape op to unify static graph and dynamic graph
53 54 55 56
            ones = paddle.ones_like(input_ids, dtype="int64")
            seq_length = paddle.cumsum(ones, axis=1)
            position_ids = seq_length - ones
            position_ids.stop_gradient = True
Z
Zeyu Chen 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
        if token_type_ids is None:
            token_type_ids = paddle.zeros_like(input_ids, dtype="int64")

        input_embedings = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = input_embedings + position_embeddings + token_type_embeddings
        embeddings = self.layer_norm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


class RobertaPooler(nn.Layer):
    """
    """

    def __init__(self, hidden_size):
        super(RobertaPooler, self).__init__()
        self.dense = nn.Linear(hidden_size, hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


class RobertaPretrainedModel(PretrainedModel):
    """
    An abstract class for pretrained RoBERTa models. It provides RoBERTa related
    `model_config_file`, `resource_files_names`, `pretrained_resource_files_map`,
    `pretrained_init_configuration`, `base_model_prefix` for downloading and
    loading pretrained models. See `PretrainedModel` for more details.
    """

    model_config_file = "model_config.json"
    pretrained_init_configuration = {
        "roberta-wwm-ext": {
            "attention_probs_dropout_prob": 0.1,
            "hidden_act": "gelu",
            "hidden_dropout_prob": 0.1,
            "hidden_size": 768,
            "initializer_range": 0.02,
            "intermediate_size": 3072,
            "max_position_embeddings": 512,
            "num_attention_heads": 12,
            "num_hidden_layers": 12,
            "type_vocab_size": 2,
            "vocab_size": 21128,
            "pad_token_id": 0
        },
        "roberta-wwm-ext-large": {
            "attention_probs_dropout_prob": 0.1,
            "hidden_act": "gelu",
            "hidden_dropout_prob": 0.1,
            "hidden_size": 1024,
            "initializer_range": 0.02,
            "intermediate_size": 4096,
            "max_position_embeddings": 512,
            "num_attention_heads": 16,
            "num_hidden_layers": 24,
            "type_vocab_size": 2,
            "vocab_size": 21128,
            "pad_token_id": 0
        },
        "rbt3": {
            "attention_probs_dropout_prob": 0.1,
            "hidden_act": "gelu",
            "hidden_dropout_prob": 0.1,
            "hidden_size": 768,
            "initializer_range": 0.02,
            "intermediate_size": 3072,
            "max_position_embeddings": 512,
            "num_attention_heads": 12,
            "num_hidden_layers": 3,
            "type_vocab_size": 2,
            "vocab_size": 21128,
            "pad_token_id": 0,
        },
        "rbtl3": {
            "attention_probs_dropout_prob": 0.1,
            "hidden_act": "gelu",
            "hidden_dropout_prob": 0.1,
            "hidden_size": 1024,
            "initializer_range": 0.02,
            "intermediate_size": 4096,
            "max_position_embeddings": 512,
            "num_attention_heads": 16,
            "num_hidden_layers": 3,
            "type_vocab_size": 2,
            "vocab_size": 21128,
            "pad_token_id": 0
        },
    }
    resource_files_names = {"model_state": "model_state.pdparams"}
    pretrained_resource_files_map = {
        "model_state": {
            "roberta-wwm-ext":
            "https://paddlenlp.bj.bcebos.com/models/transformers/roberta_base/roberta_chn_base.pdparams",
            "roberta-wwm-ext-large":
            "https://paddlenlp.bj.bcebos.com/models/transformers/roberta_large/roberta_chn_large.pdparams",
            "rbt3":
            "https://paddlenlp.bj.bcebos.com/models/transformers/rbt3/rbt3_chn_large.pdparams",
            "rbtl3":
            "https://paddlenlp.bj.bcebos.com/models/transformers/rbtl3/rbtl3_chn_large.pdparams",
        }
    }
    base_model_prefix = "roberta"

    def init_weights(self, layer):
        """ Initialization hook """
        if isinstance(layer, (nn.Linear, nn.Embedding)):
            # only support dygraph, use truncated_normal and make it inplace
            # and configurable later
            layer.weight.set_value(
                paddle.tensor.normal(
                    mean=0.0,
                    std=self.initializer_range
                    if hasattr(self, "initializer_range") else
                    self.roberta.config["initializer_range"],
                    shape=layer.weight.shape))
        elif isinstance(layer, nn.LayerNorm):
            layer._epsilon = 1e-12


@register_base_model
class RobertaModel(RobertaPretrainedModel):
    """
    """

    def __init__(self,
                 vocab_size,
                 hidden_size=768,
                 num_hidden_layers=12,
                 num_attention_heads=12,
                 intermediate_size=3072,
                 hidden_act="gelu",
                 hidden_dropout_prob=0.1,
                 attention_probs_dropout_prob=0.1,
                 max_position_embeddings=512,
                 type_vocab_size=16,
                 initializer_range=0.02,
                 pad_token_id=0):
        super(RobertaModel, self).__init__()
        self.pad_token_id = pad_token_id
        self.initializer_range = initializer_range
        self.embeddings = RobertaEmbeddings(
            vocab_size, hidden_size, hidden_dropout_prob,
            max_position_embeddings, type_vocab_size, pad_token_id)
        encoder_layer = nn.TransformerEncoderLayer(
            hidden_size,
            num_attention_heads,
            intermediate_size,
            dropout=hidden_dropout_prob,
            activation=hidden_act,
            attn_dropout=attention_probs_dropout_prob,
            act_dropout=0)
        self.encoder = nn.TransformerEncoder(encoder_layer, num_hidden_layers)
        self.pooler = RobertaPooler(hidden_size)
        self.apply(self.init_weights)

    def forward(self,
                input_ids,
                token_type_ids=None,
                position_ids=None,
                attention_mask=None):
        if attention_mask is None:
            attention_mask = paddle.unsqueeze(
                (input_ids == self.pad_token_id
                 ).astype(self.pooler.dense.weight.dtype) * -1e9,
                axis=[1, 2])
        embedding_output = self.embeddings(
            input_ids=input_ids,
            position_ids=position_ids,
            token_type_ids=token_type_ids)
        encoder_outputs = self.encoder(embedding_output, attention_mask)
        sequence_output = encoder_outputs
        pooled_output = self.pooler(sequence_output)
        return sequence_output, pooled_output


class RobertaForQuestionAnswering(RobertaPretrainedModel):
    def __init__(self, roberta, dropout=None):
        super(RobertaForQuestionAnswering, self).__init__()
        self.roberta = roberta  # allow roberta to be config
        self.classifier = nn.Linear(self.roberta.config["hidden_size"], 2)
        self.apply(self.init_weights)

    def forward(self, input_ids, token_type_ids=None):
        sequence_output, _ = self.roberta(
            input_ids,
            token_type_ids=token_type_ids,
            position_ids=None,
            attention_mask=None)

        logits = self.classifier(sequence_output)
        logits = paddle.transpose(logits, perm=[2, 0, 1])
        start_logits, end_logits = paddle.unstack(x=logits, axis=0)

        return start_logits, end_logits


class RobertaForSequenceClassification(RobertaPretrainedModel):
    """
    Model for sentence (pair) classification task with RoBERTa.
    Args:
        roberta (RobertaModel): An instance of `RobertaModel`.
        num_classes (int, optional): The number of classes. Default 2
        dropout (float, optional): The dropout probability for output of RoBERTa.
            If None, use the same value as `hidden_dropout_prob` of `RobertaModel`
            instance `Roberta`. Default None
    """

    def __init__(self, roberta, num_classes=2, dropout=None):
        super(RobertaForSequenceClassification, self).__init__()
        self.num_classes = num_classes
        self.roberta = roberta  # allow roberta to be config
        self.dropout = nn.Dropout(dropout if dropout is not None else
                                  self.roberta.config["hidden_dropout_prob"])
        self.classifier = nn.Linear(self.roberta.config["hidden_size"],
                                    num_classes)
        self.apply(self.init_weights)

    def forward(self,
                input_ids,
                token_type_ids=None,
                position_ids=None,
                attention_mask=None):
        _, pooled_output = self.roberta(
            input_ids,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            attention_mask=attention_mask)

        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)
        return logits


class RobertaForTokenClassification(RobertaPretrainedModel):
    def __init__(self, roberta, num_classes=2, dropout=None):
        super(RobertaForTokenClassification, self).__init__()
        self.num_classes = num_classes
        self.roberta = roberta  # allow roberta to be config
        self.dropout = nn.Dropout(dropout if dropout is not None else
                                  self.roberta.config["hidden_dropout_prob"])
        self.classifier = nn.Linear(self.roberta.config["hidden_size"],
                                    num_classes)
        self.apply(self.init_weights)

    def forward(self,
                input_ids,
                token_type_ids=None,
                position_ids=None,
                attention_mask=None):
        sequence_output, _ = self.roberta(
            input_ids,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            attention_mask=attention_mask)

        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)
        return logits