parser=argparse.ArgumentParser('seq2seq model with ERNIE-GEN')
parser.add_argument("--model_name_or_path",default=None,type=str,required=True,help="Path to pre-trained model or shortcut name selected in the list: "+", ".join(list(ErnieTokenizer.pretrained_init_configuration.keys())))
parser.add_argument('--max_encode_len',type=int,default=24,help="The max encoding sentence length")
parser.add_argument('--max_decode_len',type=int,default=72,help="The max decoding sentence length")
parser.add_argument("--batch_size",default=50,type=int,help="Batch size per GPU/CPU for training.",)
parser=argparse.ArgumentParser('seq2seq model with ERNIE-GEN')
parser.add_argument("--model_name_or_path",default=None,type=str,required=True,help="Path to pre-trained model or shortcut name selected in the list: "+", ".join(list(ErnieTokenizer.pretrained_init_configuration.keys())))
parser.add_argument('--max_encode_len',type=int,default=24,help="The max encoding sentence length")
parser.add_argument('--max_decode_len',type=int,default=72,help="The max decoding sentence length")
parser.add_argument("--batch_size",default=50,type=int,help="Batch size per GPU/CPU for training.",)
parser=argparse.ArgumentParser('seq2seq model with ERNIE-GEN')
parser.add_argument("--model_name_or_path",default=None,type=str,required=True,help="Path to pre-trained model or shortcut name selected in the list: "+", ".join(list(ErnieTokenizer.pretrained_init_configuration.keys())))
parser.add_argument("--output_dir",default=None,type=str,required=True,help="The output directory where the model predictions and checkpoints will be written.",)
parser.add_argument('--max_encode_len',type=int,default=5,help="The max encoding sentence length")
parser.add_argument('--max_decode_len',type=int,default=5,help="The max decoding sentence length")
parser.add_argument("--batch_size",default=8,type=int,help="Batch size per GPU/CPU for training.",)
parser.add_argument("--learning_rate",default=5e-5,type=float,help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay",default=0.1,type=float,help="Weight decay if we apply some.")
parser.add_argument("--adam_epsilon",default=1e-8,type=float,help="Epsilon for Adam optimizer.")
parser.add_argument("--num_epochs",default=3,type=int,help="Total number of training epochs to perform.",)
parser.add_argument("--max_steps",default=-1,type=int,help="If > 0: set total number of training steps to perform. Override num_epochs.",)
parser.add_argument('--noise_prob',type=float,default=0.,help='Probability of token be repalced')
parser.add_argument('--use_random_noice',action='store_true',help='If set, replace target tokens with random token from vocabulary, else replace with `[NOISE]`')