train.py 18.8 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT pretraining."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

20 21 22 23
import sys
reload(sys)
sys.setdefaultencoding('utf8')

Y
Yibing Liu 已提交
24 25
import os
import time
26
import sys
Y
Yibing Liu 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
import argparse
import numpy as np
import multiprocessing

import paddle
import paddle.fluid as fluid

from reader.pretraining import DataReader
from model.bert import BertModel, BertConfig
from optimization import optimization
from utils.args import ArgumentGroup, print_arguments, check_cuda
from utils.init import init_checkpoint, init_pretraining_params

# yapf: disable
parser = argparse.ArgumentParser(__doc__)
model_g = ArgumentGroup(parser, "model", "model configuration and paths.")
model_g.add_arg("bert_config_path",      str,  "./config/bert_config.json",  "Path to the json file for bert model config.")
model_g.add_arg("init_checkpoint",       str,  None,                         "Init checkpoint to resume training from.")
model_g.add_arg("checkpoints",           str,  "checkpoints",                "Path to save checkpoints.")
model_g.add_arg("weight_sharing",        bool, True,                         "If set, share weights between word embedding and masked lm.")
model_g.add_arg("generate_neg_sample",   bool, True,                         "If set, randomly generate negtive samples by positive samples.")

train_g = ArgumentGroup(parser, "training", "training options.")
train_g.add_arg("epoch",             int,    100,     "Number of epoches for training.")
train_g.add_arg("learning_rate",     float,  0.0001,  "Learning rate used to train with warmup.")
train_g.add_arg("lr_scheduler",      str,    "linear_warmup_decay",
                "scheduler of learning rate.", choices=['linear_warmup_decay', 'noam_decay'])
train_g.add_arg("weight_decay",      float,  0.01,    "Weight decay rate for L2 regularizer.")
train_g.add_arg("num_train_steps",   int,    1000000, "Total steps to perform pretraining.")
train_g.add_arg("warmup_steps",      int,    4000,    "Total steps to perform warmup when pretraining.")
train_g.add_arg("save_steps",        int,    10000,   "The steps interval to save checkpoints.")
train_g.add_arg("validation_steps",  int,    1000,    "The steps interval to evaluate model performance.")
train_g.add_arg("use_fp16",          bool,   False,   "Whether to use fp16 mixed precision training.")
60 61
train_g.add_arg("use_dynamic_loss_scaling",    bool,   True,   "Whether to use dynamic loss scaling in mixed precision training.")
train_g.add_arg("init_loss_scaling",           float,  2**32,
Y
Yibing Liu 已提交
62
                "Loss scaling factor for mixed precision training, only valid when use_fp16 is enabled.")
63 64 65 66 67 68 69
train_g.add_arg("incr_every_n_steps",          int,    1000,   "Increases loss scaling every n consecutive.")
train_g.add_arg("decr_every_n_nan_or_inf",     int,    2,
                "Decreases loss scaling every n accumulated steps with nan or inf gradients.")
train_g.add_arg("incr_ratio",                  float,  2.0,
                "The multiplier to use when increasing the loss scaling.")
train_g.add_arg("decr_ratio",                  float,  0.8,
                "The less-than-one-multiplier to use when decreasing.")
Y
Yibing Liu 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

log_g = ArgumentGroup(parser,     "logging", "logging related.")
log_g.add_arg("skip_steps",          int,    10,    "The steps interval to print loss.")
log_g.add_arg("verbose",             bool,   False, "Whether to output verbose log.")

data_g = ArgumentGroup(parser, "data", "Data paths, vocab paths and data processing options")
data_g.add_arg("data_dir",            str,  "./data/train/",       "Path to training data.")
data_g.add_arg("validation_set_dir",  str,  "./data/validation/",  "Path to validation data.")
data_g.add_arg("test_set_dir",        str,  None,                  "Path to test data.")
data_g.add_arg("vocab_path",          str,  "./config/vocab.txt",  "Vocabulary path.")
data_g.add_arg("max_seq_len",         int,  512,                   "Tokens' number of the longest seqence allowed.")
data_g.add_arg("batch_size",          int,  8192,
               "The total number of examples in one batch for training, see also --in_tokens.")
data_g.add_arg("in_tokens",           bool, True,
               "If set, the batch size will be the maximum number of tokens in one batch. "
               "Otherwise, it will be the maximum number of examples in one batch.")

run_type_g = ArgumentGroup(parser, "run_type", "running type options.")
run_type_g.add_arg("is_distributed",               bool,   False,  "If set, then start distributed training.")
run_type_g.add_arg("use_cuda",                     bool,   True,   "If set, use GPU for training.")
run_type_g.add_arg("use_fast_executor",            bool,   False,  "If set, use fast parallel executor (in experiment).")
run_type_g.add_arg("num_iteration_per_drop_scope", int,    1,      "Ihe iteration intervals to clean up temporary variables.")
run_type_g.add_arg("do_test",                      bool,   False,  "Whether to perform evaluation on test data set.")

args = parser.parse_args()
# yapf: enable.


98 99 100 101
def create_model(bert_config):
    input_fields = {
        'names': ['src_ids', 'pos_ids', 'sent_ids', 'input_mask', 'mask_label', 'mask_pos', 'labels'],
        'shapes': [[-1, args.max_seq_len, 1], [-1, args.max_seq_len, 1],
Y
Yibing Liu 已提交
102
                [-1, args.max_seq_len, 1],
103 104 105 106
                [-1, args.max_seq_len, 1], [-1, 1], [-1, 1], [-1, 1]],
        'dtypes': ['int64', 'int64', 'int64', 'float32', 'int64', 'int64', 'int64'],
        'lod_levels': [0, 0, 0, 0, 0, 0, 0],
    }
Y
Yibing Liu 已提交
107

108 109 110 111 112 113 114 115
    inputs = [fluid.layers.data(name=input_fields['names'][i],
                      shape=input_fields['shapes'][i],
                      dtype=input_fields['dtypes'][i],
                      lod_level=input_fields['lod_levels'][i]) for i in range(len(input_fields['names']))]

    (src_ids, pos_ids, sent_ids, input_mask, mask_label, mask_pos, labels) = inputs

    pyreader = fluid.io.PyReader(feed_list=inputs, capacity=50, iterable=False)
Y
Yibing Liu 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

    bert = BertModel(
        src_ids=src_ids,
        position_ids=pos_ids,
        sentence_ids=sent_ids,
        input_mask=input_mask,
        config=bert_config,
        weight_sharing=args.weight_sharing,
        use_fp16=args.use_fp16)

    next_sent_acc, mask_lm_loss, total_loss = bert.get_pretraining_output(
        mask_label, mask_pos, labels)

    return pyreader, next_sent_acc, mask_lm_loss, total_loss


def predict_wrapper(args,
                    exe,
                    bert_config,
                    test_prog=None,
                    pyreader=None,
                    fetch_list=None):
    # Context to do validation.
    data_path = args.test_set_dir if args.do_test else args.validation_set_dir
    data_reader = DataReader(
        data_path,
        vocab_path=args.vocab_path,
        batch_size=args.batch_size,
        in_tokens=args.in_tokens,
        voc_size=bert_config['vocab_size'],
        shuffle_files=False,
        epoch=1,
        max_seq_len=args.max_seq_len,
        is_test=True)

Y
Yibing Liu 已提交
151 152
    pyreader.decorate_batch_generator(data_reader.data_generator())

Y
Yibing Liu 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
    if args.do_test:
        assert args.init_checkpoint is not None, "[FATAL] Please use --init_checkpoint '/path/to/checkpoints' \
                                                  to specify you pretrained model checkpoints"

        init_pretraining_params(exe, args.init_checkpoint, test_prog)

    def predict(exe=exe, pyreader=pyreader):
        pyreader.start()

        cost = 0
        lm_cost = 0
        acc = 0
        steps = 0
        time_begin = time.time()
        while True:
            try:
                each_next_acc, each_mask_lm_cost, each_total_cost = exe.run(
                    fetch_list=fetch_list, program=test_prog)
                acc += each_next_acc
                lm_cost += each_mask_lm_cost
                cost += each_total_cost
                steps += 1
                if args.do_test and steps % args.skip_steps == 0:
                    print("[test_set] steps: %d" % steps)

            except fluid.core.EOFException:
                pyreader.reset()
                break

        used_time = time.time() - time_begin
        return cost, lm_cost, acc, steps, (args.skip_steps / used_time)

    return predict


def test(args):
    bert_config = BertConfig(args.bert_config_path)
    bert_config.print_config()

    test_prog = fluid.Program()
    test_startup = fluid.Program()
    with fluid.program_guard(test_prog, test_startup):
        with fluid.unique_name.guard():
            test_pyreader, next_sent_acc, mask_lm_loss, total_loss = create_model(
197
                bert_config=bert_config)
Y
Yibing Liu 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231

    test_prog = test_prog.clone(for_test=True)

    place = fluid.CUDAPlace(0) if args.use_cuda == True else fluid.CPUPlace()
    exe = fluid.Executor(place)
    exe.run(test_startup)

    predict = predict_wrapper(
        args,
        exe,
        bert_config,
        test_prog=test_prog,
        pyreader=test_pyreader,
        fetch_list=[next_sent_acc.name, mask_lm_loss.name, total_loss.name])

    print("test begin")
    loss, lm_loss, acc, steps, speed = predict()
    print(
        "[test_set] loss: %f, global ppl: %f, next_sent_acc: %f, speed: %f steps/s"
        % (np.mean(np.array(loss) / steps),
           np.exp(np.mean(np.array(lm_loss) / steps)),
           np.mean(np.array(acc) / steps), speed))


def train(args):
    print("pretraining start")
    bert_config = BertConfig(args.bert_config_path)
    bert_config.print_config()

    train_program = fluid.Program()
    startup_prog = fluid.Program()
    with fluid.program_guard(train_program, startup_prog):
        with fluid.unique_name.guard():
            train_pyreader, next_sent_acc, mask_lm_loss, total_loss = create_model(
232
                bert_config=bert_config)
233
            scheduled_lr, loss_scaling = optimization(
Y
Yibing Liu 已提交
234 235 236 237 238 239 240 241 242
                loss=total_loss,
                warmup_steps=args.warmup_steps,
                num_train_steps=args.num_train_steps,
                learning_rate=args.learning_rate,
                train_program=train_program,
                startup_prog=startup_prog,
                weight_decay=args.weight_decay,
                scheduler=args.lr_scheduler,
                use_fp16=args.use_fp16,
243 244 245 246 247 248
                use_dynamic_loss_scaling=args.use_dynamic_loss_scaling,
                init_loss_scaling=args.init_loss_scaling,
                incr_every_n_steps=args.incr_every_n_steps,
                decr_every_n_nan_or_inf=args.decr_every_n_nan_or_inf,
                incr_ratio=args.incr_ratio,
                decr_ratio=args.decr_ratio)
Y
Yibing Liu 已提交
249 250 251 252 253

    test_prog = fluid.Program()
    with fluid.program_guard(test_prog, startup_prog):
        with fluid.unique_name.guard():
            test_pyreader, next_sent_acc, mask_lm_loss, total_loss = create_model(
254
                bert_config=bert_config)
Y
Yibing Liu 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327

    test_prog = test_prog.clone(for_test=True)

    if args.use_cuda:
        place = fluid.CUDAPlace(0)
        dev_count = fluid.core.get_cuda_device_count()
    else:
        place = fluid.CPUPlace()
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))

    print("Device count %d" % dev_count)
    if args.verbose:
        if args.in_tokens:
            lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
         program=train_program,
         batch_size=args.batch_size // args.max_seq_len)
        else:
            lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
         program=train_program, batch_size=args.batch_size)
        print("Theoretical memory usage in training: %.3f - %.3f %s" %
              (lower_mem, upper_mem, unit))

    nccl2_num_trainers = 1
    nccl2_trainer_id = 0
    print("args.is_distributed:", args.is_distributed)
    if args.is_distributed:
        worker_endpoints_env = os.getenv("worker_endpoints")
        worker_endpoints = worker_endpoints_env.split(",")
        trainers_num = len(worker_endpoints)
        current_endpoint = os.getenv("current_endpoint")
        trainer_id = worker_endpoints.index(current_endpoint)
        if trainer_id == 0:
            print("train_id == 0, sleep 60s")
            time.sleep(60)
        print("worker_endpoints:{} trainers_num:{} current_endpoint:{} \
              trainer_id:{}"
                            .format(worker_endpoints, trainers_num,
                                    current_endpoint, trainer_id))

        # prepare nccl2 env.
        config = fluid.DistributeTranspilerConfig()
        config.mode = "nccl2"
        t = fluid.DistributeTranspiler(config=config)
        t.transpile(
            trainer_id,
            trainers=worker_endpoints_env,
            current_endpoint=current_endpoint,
            program=train_program,
            startup_program=startup_prog)
        nccl2_num_trainers = trainers_num
        nccl2_trainer_id = trainer_id

    exe = fluid.Executor(place)
    exe.run(startup_prog)

    if args.init_checkpoint and args.init_checkpoint != "":
        init_checkpoint(exe, args.init_checkpoint, train_program, args.use_fp16)

    data_reader = DataReader(
        data_dir=args.data_dir,
        batch_size=args.batch_size,
        in_tokens=args.in_tokens,
        vocab_path=args.vocab_path,
        voc_size=bert_config['vocab_size'],
        epoch=args.epoch,
        max_seq_len=args.max_seq_len,
        generate_neg_sample=args.generate_neg_sample)

    exec_strategy = fluid.ExecutionStrategy()
    exec_strategy.use_experimental_executor = args.use_fast_executor
    exec_strategy.num_threads = dev_count
    exec_strategy.num_iteration_per_drop_scope = args.num_iteration_per_drop_scope

328
    build_strategy = fluid.BuildStrategy()
Y
Yibing Liu 已提交
329 330 331
    if not sys.platform == "win32":
        build_strategy.num_trainers = nccl2_num_trainers
    elif  nccl2_num_trainers > 1:
332
        raise ValueError("Windows platform doesn't support distributed training!")
333
    build_strategy.trainer_id = nccl2_trainer_id
Y
Yibing Liu 已提交
334 335 336
    # use_ngraph is for CPU only, please refer to README_ngraph.md for details
    use_ngraph = os.getenv('FLAGS_use_ngraph')
    if not use_ngraph:
337 338 339 340
        train_compiled_program = fluid.CompiledProgram(train_program).with_data_parallel(
                 loss_name=total_loss.name,
                 exec_strategy=exec_strategy,
                 build_strategy=build_strategy)
Y
Yibing Liu 已提交
341 342 343 344 345 346 347 348 349 350 351 352

    if args.validation_set_dir and args.validation_set_dir != "":
        predict = predict_wrapper(
            args,
            exe,
            bert_config,
            test_prog=test_prog,
            pyreader=test_pyreader,
            fetch_list=[
                next_sent_acc.name, mask_lm_loss.name, total_loss.name
            ])

353
    train_pyreader.decorate_batch_generator(data_reader.data_generator())
Y
Yibing Liu 已提交
354 355 356 357 358 359 360 361
    train_pyreader.start()
    steps = 0
    cost = []
    lm_cost = []
    acc = []
    time_begin = time.time()
    while steps < args.num_train_steps:
        try:
362
            steps += 1
Y
Yibing Liu 已提交
363 364 365 366
            skip_steps = args.skip_steps * nccl2_num_trainers

            if nccl2_trainer_id != 0:
                if use_ngraph:
367
                    exe.run(fetch_list=[], program=train_program)
Y
Yibing Liu 已提交
368
                else:
369
                    exe.run(fetch_list=[], program=train_compiled_program)
Y
Yibing Liu 已提交
370 371
                continue

372
            if steps % args.skip_steps != 0:
Y
Yibing Liu 已提交
373
                if use_ngraph:
374
                    exe.run(fetch_list=[], program=train_program)
Y
Yibing Liu 已提交
375
                else:
376
                    exe.run(fetch_list=[], program=train_compiled_program)
Y
Yibing Liu 已提交
377 378

            else:
379 380 381 382 383
                fetch_list=[next_sent_acc.name, mask_lm_loss.name, total_loss.name,
                        scheduled_lr.name]
                if args.use_fp16:
                    fetch_list.append(loss_scaling.name)

Y
Yibing Liu 已提交
384
                if use_ngraph:
385 386
                    outputs = exe.run(
                        fetch_list=fetch_list, program=train_program)
Y
Yibing Liu 已提交
387
                else:
388 389 390 391 392 393 394
                    outputs = exe.run(
                        fetch_list=fetch_list, program=train_compiled_program)

                if args.use_fp16:
                    each_next_acc, each_mask_lm_cost, each_total_cost, np_lr, np_scaling = outputs
                else:
                    each_next_acc, each_mask_lm_cost, each_total_cost, np_lr = outputs
Y
Yibing Liu 已提交
395 396 397 398 399 400 401 402 403

                acc.extend(each_next_acc)
                lm_cost.extend(each_mask_lm_cost)
                cost.extend(each_total_cost)

                time_end = time.time()
                used_time = time_end - time_begin
                epoch, current_file_index, total_file, current_file = data_reader.get_progress(
                )
404 405 406 407 408 409 410
                if args.verbose:
                    verbose = "feed_queue size: %d, " %train_pyreader.queue.size()
                    verbose += "current learning_rate: %f, " % np_lr[0]
                    if args.use_fp16:
                        verbose += "loss scaling: %f" % np_scaling[0]
                    print(verbose)

Y
Yibing Liu 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
                print("epoch: %d, progress: %d/%d, step: %d, loss: %f, "
                      "ppl: %f, next_sent_acc: %f, speed: %f steps/s, file: %s"
                      % (epoch, current_file_index, total_file, steps,
                         np.mean(np.array(cost)),
                         np.mean(np.exp(np.array(lm_cost))),
                         np.mean(np.array(acc)), skip_steps / used_time,
                         current_file))
                cost = []
                lm_cost = []
                acc = []
                time_begin = time.time()

            if steps % args.save_steps == 0:
                save_path = os.path.join(args.checkpoints, "step_" + str(steps))
                fluid.io.save_persistables(exe, save_path, train_program)

            if args.validation_set_dir and steps % args.validation_steps == 0:
                vali_cost, vali_lm_cost, vali_acc, vali_steps, vali_speed = predict(
                )
                print("[validation_set] epoch: %d, step: %d, "
                      "loss: %f, global ppl: %f, batch-averged ppl: %f, "
                      "next_sent_acc: %f, speed: %f steps/s" %
                      (epoch, steps,
                       np.mean(np.array(vali_cost) / vali_steps),
                       np.exp(np.mean(np.array(vali_lm_cost) / vali_steps)),
                       np.mean(np.exp(np.array(vali_lm_cost) / vali_steps)),
                       np.mean(np.array(vali_acc) / vali_steps), vali_speed))

        except fluid.core.EOFException:
            train_pyreader.reset()
            break

if __name__ == '__main__':
    print_arguments(args)
    check_cuda(args.use_cuda)
    if args.do_test:
        test(args)
    else:
        train(args)