train.py 18.8 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT pretraining."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time
22
import sys
Y
Yibing Liu 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
import argparse
import numpy as np
import multiprocessing

import paddle
import paddle.fluid as fluid

from reader.pretraining import DataReader
from model.bert import BertModel, BertConfig
from optimization import optimization
from utils.args import ArgumentGroup, print_arguments, check_cuda
from utils.init import init_checkpoint, init_pretraining_params

# yapf: disable
parser = argparse.ArgumentParser(__doc__)
model_g = ArgumentGroup(parser, "model", "model configuration and paths.")
model_g.add_arg("bert_config_path",      str,  "./config/bert_config.json",  "Path to the json file for bert model config.")
model_g.add_arg("init_checkpoint",       str,  None,                         "Init checkpoint to resume training from.")
model_g.add_arg("checkpoints",           str,  "checkpoints",                "Path to save checkpoints.")
model_g.add_arg("weight_sharing",        bool, True,                         "If set, share weights between word embedding and masked lm.")
model_g.add_arg("generate_neg_sample",   bool, True,                         "If set, randomly generate negtive samples by positive samples.")

train_g = ArgumentGroup(parser, "training", "training options.")
train_g.add_arg("epoch",             int,    100,     "Number of epoches for training.")
train_g.add_arg("learning_rate",     float,  0.0001,  "Learning rate used to train with warmup.")
train_g.add_arg("lr_scheduler",      str,    "linear_warmup_decay",
                "scheduler of learning rate.", choices=['linear_warmup_decay', 'noam_decay'])
train_g.add_arg("weight_decay",      float,  0.01,    "Weight decay rate for L2 regularizer.")
train_g.add_arg("num_train_steps",   int,    1000000, "Total steps to perform pretraining.")
train_g.add_arg("warmup_steps",      int,    4000,    "Total steps to perform warmup when pretraining.")
train_g.add_arg("save_steps",        int,    10000,   "The steps interval to save checkpoints.")
train_g.add_arg("validation_steps",  int,    1000,    "The steps interval to evaluate model performance.")
train_g.add_arg("use_fp16",          bool,   False,   "Whether to use fp16 mixed precision training.")
56 57
train_g.add_arg("use_dynamic_loss_scaling",    bool,   True,   "Whether to use dynamic loss scaling in mixed precision training.")
train_g.add_arg("init_loss_scaling",           float,  2**32,
Y
Yibing Liu 已提交
58
                "Loss scaling factor for mixed precision training, only valid when use_fp16 is enabled.")
59 60 61 62 63 64 65
train_g.add_arg("incr_every_n_steps",          int,    1000,   "Increases loss scaling every n consecutive.")
train_g.add_arg("decr_every_n_nan_or_inf",     int,    2,
                "Decreases loss scaling every n accumulated steps with nan or inf gradients.")
train_g.add_arg("incr_ratio",                  float,  2.0,
                "The multiplier to use when increasing the loss scaling.")
train_g.add_arg("decr_ratio",                  float,  0.8,
                "The less-than-one-multiplier to use when decreasing.")
Y
Yibing Liu 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

log_g = ArgumentGroup(parser,     "logging", "logging related.")
log_g.add_arg("skip_steps",          int,    10,    "The steps interval to print loss.")
log_g.add_arg("verbose",             bool,   False, "Whether to output verbose log.")

data_g = ArgumentGroup(parser, "data", "Data paths, vocab paths and data processing options")
data_g.add_arg("data_dir",            str,  "./data/train/",       "Path to training data.")
data_g.add_arg("validation_set_dir",  str,  "./data/validation/",  "Path to validation data.")
data_g.add_arg("test_set_dir",        str,  None,                  "Path to test data.")
data_g.add_arg("vocab_path",          str,  "./config/vocab.txt",  "Vocabulary path.")
data_g.add_arg("max_seq_len",         int,  512,                   "Tokens' number of the longest seqence allowed.")
data_g.add_arg("batch_size",          int,  8192,
               "The total number of examples in one batch for training, see also --in_tokens.")
data_g.add_arg("in_tokens",           bool, True,
               "If set, the batch size will be the maximum number of tokens in one batch. "
               "Otherwise, it will be the maximum number of examples in one batch.")

run_type_g = ArgumentGroup(parser, "run_type", "running type options.")
run_type_g.add_arg("is_distributed",               bool,   False,  "If set, then start distributed training.")
run_type_g.add_arg("use_cuda",                     bool,   True,   "If set, use GPU for training.")
run_type_g.add_arg("use_fast_executor",            bool,   False,  "If set, use fast parallel executor (in experiment).")
run_type_g.add_arg("num_iteration_per_drop_scope", int,    1,      "Ihe iteration intervals to clean up temporary variables.")
run_type_g.add_arg("do_test",                      bool,   False,  "Whether to perform evaluation on test data set.")

args = parser.parse_args()
# yapf: enable.


94 95 96 97
def create_model(bert_config):
    input_fields = {
        'names': ['src_ids', 'pos_ids', 'sent_ids', 'input_mask', 'mask_label', 'mask_pos', 'labels'],
        'shapes': [[-1, args.max_seq_len, 1], [-1, args.max_seq_len, 1],
Y
Yibing Liu 已提交
98
                [-1, args.max_seq_len, 1],
99 100 101 102
                [-1, args.max_seq_len, 1], [-1, 1], [-1, 1], [-1, 1]],
        'dtypes': ['int64', 'int64', 'int64', 'float32', 'int64', 'int64', 'int64'],
        'lod_levels': [0, 0, 0, 0, 0, 0, 0],
    }
Y
Yibing Liu 已提交
103

104 105 106 107 108 109 110 111
    inputs = [fluid.layers.data(name=input_fields['names'][i],
                      shape=input_fields['shapes'][i],
                      dtype=input_fields['dtypes'][i],
                      lod_level=input_fields['lod_levels'][i]) for i in range(len(input_fields['names']))]

    (src_ids, pos_ids, sent_ids, input_mask, mask_label, mask_pos, labels) = inputs

    pyreader = fluid.io.PyReader(feed_list=inputs, capacity=50, iterable=False)
Y
Yibing Liu 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146

    bert = BertModel(
        src_ids=src_ids,
        position_ids=pos_ids,
        sentence_ids=sent_ids,
        input_mask=input_mask,
        config=bert_config,
        weight_sharing=args.weight_sharing,
        use_fp16=args.use_fp16)

    next_sent_acc, mask_lm_loss, total_loss = bert.get_pretraining_output(
        mask_label, mask_pos, labels)

    return pyreader, next_sent_acc, mask_lm_loss, total_loss


def predict_wrapper(args,
                    exe,
                    bert_config,
                    test_prog=None,
                    pyreader=None,
                    fetch_list=None):
    # Context to do validation.
    data_path = args.test_set_dir if args.do_test else args.validation_set_dir
    data_reader = DataReader(
        data_path,
        vocab_path=args.vocab_path,
        batch_size=args.batch_size,
        in_tokens=args.in_tokens,
        voc_size=bert_config['vocab_size'],
        shuffle_files=False,
        epoch=1,
        max_seq_len=args.max_seq_len,
        is_test=True)

Y
Yibing Liu 已提交
147 148
    pyreader.decorate_batch_generator(data_reader.data_generator())

Y
Yibing Liu 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
    if args.do_test:
        assert args.init_checkpoint is not None, "[FATAL] Please use --init_checkpoint '/path/to/checkpoints' \
                                                  to specify you pretrained model checkpoints"

        init_pretraining_params(exe, args.init_checkpoint, test_prog)

    def predict(exe=exe, pyreader=pyreader):
        pyreader.start()

        cost = 0
        lm_cost = 0
        acc = 0
        steps = 0
        time_begin = time.time()
        while True:
            try:
                each_next_acc, each_mask_lm_cost, each_total_cost = exe.run(
                    fetch_list=fetch_list, program=test_prog)
                acc += each_next_acc
                lm_cost += each_mask_lm_cost
                cost += each_total_cost
                steps += 1
                if args.do_test and steps % args.skip_steps == 0:
                    print("[test_set] steps: %d" % steps)

            except fluid.core.EOFException:
                pyreader.reset()
                break

        used_time = time.time() - time_begin
        return cost, lm_cost, acc, steps, (args.skip_steps / used_time)

    return predict


def test(args):
    bert_config = BertConfig(args.bert_config_path)
    bert_config.print_config()

    test_prog = fluid.Program()
    test_startup = fluid.Program()
    with fluid.program_guard(test_prog, test_startup):
        with fluid.unique_name.guard():
            test_pyreader, next_sent_acc, mask_lm_loss, total_loss = create_model(
193
                bert_config=bert_config)
Y
Yibing Liu 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227

    test_prog = test_prog.clone(for_test=True)

    place = fluid.CUDAPlace(0) if args.use_cuda == True else fluid.CPUPlace()
    exe = fluid.Executor(place)
    exe.run(test_startup)

    predict = predict_wrapper(
        args,
        exe,
        bert_config,
        test_prog=test_prog,
        pyreader=test_pyreader,
        fetch_list=[next_sent_acc.name, mask_lm_loss.name, total_loss.name])

    print("test begin")
    loss, lm_loss, acc, steps, speed = predict()
    print(
        "[test_set] loss: %f, global ppl: %f, next_sent_acc: %f, speed: %f steps/s"
        % (np.mean(np.array(loss) / steps),
           np.exp(np.mean(np.array(lm_loss) / steps)),
           np.mean(np.array(acc) / steps), speed))


def train(args):
    print("pretraining start")
    bert_config = BertConfig(args.bert_config_path)
    bert_config.print_config()

    train_program = fluid.Program()
    startup_prog = fluid.Program()
    with fluid.program_guard(train_program, startup_prog):
        with fluid.unique_name.guard():
            train_pyreader, next_sent_acc, mask_lm_loss, total_loss = create_model(
228
                bert_config=bert_config)
229
            scheduled_lr, loss_scaling = optimization(
Y
Yibing Liu 已提交
230 231 232 233 234 235 236 237 238
                loss=total_loss,
                warmup_steps=args.warmup_steps,
                num_train_steps=args.num_train_steps,
                learning_rate=args.learning_rate,
                train_program=train_program,
                startup_prog=startup_prog,
                weight_decay=args.weight_decay,
                scheduler=args.lr_scheduler,
                use_fp16=args.use_fp16,
239 240 241 242 243 244
                use_dynamic_loss_scaling=args.use_dynamic_loss_scaling,
                init_loss_scaling=args.init_loss_scaling,
                incr_every_n_steps=args.incr_every_n_steps,
                decr_every_n_nan_or_inf=args.decr_every_n_nan_or_inf,
                incr_ratio=args.incr_ratio,
                decr_ratio=args.decr_ratio)
Y
Yibing Liu 已提交
245 246 247 248 249

    test_prog = fluid.Program()
    with fluid.program_guard(test_prog, startup_prog):
        with fluid.unique_name.guard():
            test_pyreader, next_sent_acc, mask_lm_loss, total_loss = create_model(
250
                bert_config=bert_config)
Y
Yibing Liu 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323

    test_prog = test_prog.clone(for_test=True)

    if args.use_cuda:
        place = fluid.CUDAPlace(0)
        dev_count = fluid.core.get_cuda_device_count()
    else:
        place = fluid.CPUPlace()
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))

    print("Device count %d" % dev_count)
    if args.verbose:
        if args.in_tokens:
            lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
         program=train_program,
         batch_size=args.batch_size // args.max_seq_len)
        else:
            lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
         program=train_program, batch_size=args.batch_size)
        print("Theoretical memory usage in training: %.3f - %.3f %s" %
              (lower_mem, upper_mem, unit))

    nccl2_num_trainers = 1
    nccl2_trainer_id = 0
    print("args.is_distributed:", args.is_distributed)
    if args.is_distributed:
        worker_endpoints_env = os.getenv("worker_endpoints")
        worker_endpoints = worker_endpoints_env.split(",")
        trainers_num = len(worker_endpoints)
        current_endpoint = os.getenv("current_endpoint")
        trainer_id = worker_endpoints.index(current_endpoint)
        if trainer_id == 0:
            print("train_id == 0, sleep 60s")
            time.sleep(60)
        print("worker_endpoints:{} trainers_num:{} current_endpoint:{} \
              trainer_id:{}"
                            .format(worker_endpoints, trainers_num,
                                    current_endpoint, trainer_id))

        # prepare nccl2 env.
        config = fluid.DistributeTranspilerConfig()
        config.mode = "nccl2"
        t = fluid.DistributeTranspiler(config=config)
        t.transpile(
            trainer_id,
            trainers=worker_endpoints_env,
            current_endpoint=current_endpoint,
            program=train_program,
            startup_program=startup_prog)
        nccl2_num_trainers = trainers_num
        nccl2_trainer_id = trainer_id

    exe = fluid.Executor(place)
    exe.run(startup_prog)

    if args.init_checkpoint and args.init_checkpoint != "":
        init_checkpoint(exe, args.init_checkpoint, train_program, args.use_fp16)

    data_reader = DataReader(
        data_dir=args.data_dir,
        batch_size=args.batch_size,
        in_tokens=args.in_tokens,
        vocab_path=args.vocab_path,
        voc_size=bert_config['vocab_size'],
        epoch=args.epoch,
        max_seq_len=args.max_seq_len,
        generate_neg_sample=args.generate_neg_sample)

    exec_strategy = fluid.ExecutionStrategy()
    exec_strategy.use_experimental_executor = args.use_fast_executor
    exec_strategy.num_threads = dev_count
    exec_strategy.num_iteration_per_drop_scope = args.num_iteration_per_drop_scope

324
    build_strategy = fluid.BuildStrategy()
Y
Yibing Liu 已提交
325 326 327
    if not sys.platform == "win32":
        build_strategy.num_trainers = nccl2_num_trainers
    elif  nccl2_num_trainers > 1:
328
        raise ValueError("Windows platform doesn't support distributed training!")
329
    build_strategy.trainer_id = nccl2_trainer_id
Y
Yibing Liu 已提交
330 331 332
    # use_ngraph is for CPU only, please refer to README_ngraph.md for details
    use_ngraph = os.getenv('FLAGS_use_ngraph')
    if not use_ngraph:
333 334 335 336
        train_compiled_program = fluid.CompiledProgram(train_program).with_data_parallel(
                 loss_name=total_loss.name,
                 exec_strategy=exec_strategy,
                 build_strategy=build_strategy)
Y
Yibing Liu 已提交
337 338 339 340 341 342 343 344 345 346 347 348

    if args.validation_set_dir and args.validation_set_dir != "":
        predict = predict_wrapper(
            args,
            exe,
            bert_config,
            test_prog=test_prog,
            pyreader=test_pyreader,
            fetch_list=[
                next_sent_acc.name, mask_lm_loss.name, total_loss.name
            ])

349
    train_pyreader.decorate_batch_generator(data_reader.data_generator())
Y
Yibing Liu 已提交
350 351 352 353 354 355 356 357
    train_pyreader.start()
    steps = 0
    cost = []
    lm_cost = []
    acc = []
    time_begin = time.time()
    while steps < args.num_train_steps:
        try:
358
            steps += 1
Y
Yibing Liu 已提交
359 360 361 362
            skip_steps = args.skip_steps * nccl2_num_trainers

            if nccl2_trainer_id != 0:
                if use_ngraph:
363
                    exe.run(fetch_list=[], program=train_program)
Y
Yibing Liu 已提交
364
                else:
365
                    exe.run(fetch_list=[], program=train_compiled_program)
Y
Yibing Liu 已提交
366 367
                continue

368
            if steps % args.skip_steps != 0:
Y
Yibing Liu 已提交
369
                if use_ngraph:
370
                    exe.run(fetch_list=[], program=train_program)
Y
Yibing Liu 已提交
371
                else:
372
                    exe.run(fetch_list=[], program=train_compiled_program)
Y
Yibing Liu 已提交
373 374

            else:
375 376 377 378 379
                fetch_list=[next_sent_acc.name, mask_lm_loss.name, total_loss.name,
                        scheduled_lr.name]
                if args.use_fp16:
                    fetch_list.append(loss_scaling.name)

Y
Yibing Liu 已提交
380
                if use_ngraph:
381 382
                    outputs = exe.run(
                        fetch_list=fetch_list, program=train_program)
Y
Yibing Liu 已提交
383
                else:
384 385 386 387 388 389 390
                    outputs = exe.run(
                        fetch_list=fetch_list, program=train_compiled_program)

                if args.use_fp16:
                    each_next_acc, each_mask_lm_cost, each_total_cost, np_lr, np_scaling = outputs
                else:
                    each_next_acc, each_mask_lm_cost, each_total_cost, np_lr = outputs
Y
Yibing Liu 已提交
391 392 393 394 395 396 397 398 399

                acc.extend(each_next_acc)
                lm_cost.extend(each_mask_lm_cost)
                cost.extend(each_total_cost)

                time_end = time.time()
                used_time = time_end - time_begin
                epoch, current_file_index, total_file, current_file = data_reader.get_progress(
                )
400 401 402 403 404 405 406
                if args.verbose:
                    verbose = "feed_queue size: %d, " %train_pyreader.queue.size()
                    verbose += "current learning_rate: %f, " % np_lr[0]
                    if args.use_fp16:
                        verbose += "loss scaling: %f" % np_scaling[0]
                    print(verbose)

Y
Yibing Liu 已提交
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
                print("epoch: %d, progress: %d/%d, step: %d, loss: %f, "
                      "ppl: %f, next_sent_acc: %f, speed: %f steps/s, file: %s"
                      % (epoch, current_file_index, total_file, steps,
                         np.mean(np.array(cost)),
                         np.mean(np.exp(np.array(lm_cost))),
                         np.mean(np.array(acc)), skip_steps / used_time,
                         current_file))
                cost = []
                lm_cost = []
                acc = []
                time_begin = time.time()

            if steps % args.save_steps == 0:
                save_path = os.path.join(args.checkpoints, "step_" + str(steps))
                fluid.io.save_persistables(exe, save_path, train_program)

            if args.validation_set_dir and steps % args.validation_steps == 0:
                vali_cost, vali_lm_cost, vali_acc, vali_steps, vali_speed = predict(
                )
                print("[validation_set] epoch: %d, step: %d, "
                      "loss: %f, global ppl: %f, batch-averged ppl: %f, "
                      "next_sent_acc: %f, speed: %f steps/s" %
                      (epoch, steps,
                       np.mean(np.array(vali_cost) / vali_steps),
                       np.exp(np.mean(np.array(vali_lm_cost) / vali_steps)),
                       np.mean(np.exp(np.array(vali_lm_cost) / vali_steps)),
                       np.mean(np.array(vali_acc) / vali_steps), vali_speed))

        except fluid.core.EOFException:
            train_pyreader.reset()
            break

if __name__ == '__main__':
    print_arguments(args)
    check_cuda(args.use_cuda)
    if args.do_test:
        test(args)
    else:
        train(args)