utils.py 5.3 KB
Newer Older
L
Li Fuchen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yibing Liu 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
"""
util tools
"""
from __future__ import print_function
import os
import sys
import numpy as np
import paddle.fluid as fluid


def str2bool(v):
    """
    argparse does not support True or False in python
    """
    return v.lower() in ("true", "t", "1")


class ArgumentGroup(object):
    """
    Put arguments to one group
    """
L
Li Fuchen 已提交
35

Y
Yibing Liu 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
    def __init__(self, parser, title, des):
        """none"""
        self._group = parser.add_argument_group(title=title, description=des)

    def add_arg(self, name, type, default, help, **kwargs):
        """ Add argument """
        type = str2bool if type == bool else type
        self._group.add_argument(
            "--" + name,
            default=default,
            type=type,
            help=help + ' Default: %(default)s.',
            **kwargs)


def print_arguments(args):
    """none"""
    print('-----------  Configuration Arguments -----------')
    for arg, value in sorted(vars(args).items()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------------')


def to_str(string, encoding="utf-8"):
    """convert to str for print"""
    if sys.version_info.major == 3:
        if isinstance(string, bytes):
            return string.decode(encoding)
    elif sys.version_info.major == 2:
        if isinstance(string, unicode):
W
wopeizl 已提交
66 67 68 69
            if os.name == 'nt':
                return string
            else:
                return string.encode(encoding)
Y
Yibing Liu 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
    return string


def to_lodtensor(data, place):
    """
    Convert data in list into lodtensor.
    """
    seq_lens = [len(seq) for seq in data]
    cur_len = 0
    lod = [cur_len]
    for l in seq_lens:
        cur_len += l
        lod.append(cur_len)
    flattened_data = np.concatenate(data, axis=0).astype("int64")
    flattened_data = flattened_data.reshape([len(flattened_data), 1])
    res = fluid.LoDTensor()
    res.set(flattened_data, place)
    res.set_lod([lod])
    return res


def parse_result(words, crf_decode, dataset):
    """ parse result """
    offset_list = (crf_decode.lod())[0]
    words = np.array(words)
    crf_decode = np.array(crf_decode)
    batch_size = len(offset_list) - 1
    batch_out_str = []
    for sent_index in range(batch_size):
        sent_out_str = ""
        sent_len = offset_list[sent_index + 1] - offset_list[sent_index]
101 102
        last_word = ""
        last_tag = ""
L
Li Fuchen 已提交
103
        for tag_index in range(sent_len):  # iterate every word in sent
Y
Yibing Liu 已提交
104 105 106 107 108
            index = tag_index + offset_list[sent_index]
            cur_word_id = str(words[index][0])
            cur_tag_id = str(crf_decode[index][0])
            cur_word = dataset.id2word_dict[cur_word_id]
            cur_tag = dataset.id2label_dict[cur_tag_id]
109 110 111 112 113 114 115 116 117 118 119 120 121
            if last_word == "":
                last_word = cur_word
                last_tag = cur_tag[:-2]
            elif cur_tag.endswith("-B") or cur_tag == "O":
                sent_out_str += last_word + u"/" + last_tag + u" "
                last_word = cur_word
                last_tag = cur_tag[:-2]
            elif cur_tag.endswith("-I"):
                last_word += cur_word
            else:
                raise ValueError("invalid tag: %s" % (cur_tag))
        if cur_word != "":
            sent_out_str += last_word + u"/" + last_tag + u" "
Y
Yibing Liu 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
        sent_out_str = to_str(sent_out_str.strip())
        batch_out_str.append(sent_out_str)
    return batch_out_str


def init_checkpoint(exe, init_checkpoint_path, main_program):
    """
    Init CheckPoint
    """
    assert os.path.exists(
        init_checkpoint_path), "[%s] cann't be found." % init_checkpoint_path

    def existed_persitables(var):
        """
        If existed presitabels
        """
        if not fluid.io.is_persistable(var):
            return False
        return os.path.exists(os.path.join(init_checkpoint_path, var.name))

    fluid.io.load_vars(
        exe,
        init_checkpoint_path,
        main_program=main_program,
        predicate=existed_persitables)
    print("Load model from {}".format(init_checkpoint_path))


def init_pretraining_params(exe,
                            pretraining_params_path,
                            main_program,
                            use_fp16=False):
    """load params of pretrained model, NOT including moment, learning_rate"""
    assert os.path.exists(pretraining_params_path
                          ), "[%s] cann't be found." % pretraining_params_path

    def _existed_params(var):
        if not isinstance(var, fluid.framework.Parameter):
            return False
        return os.path.exists(os.path.join(pretraining_params_path, var.name))

    fluid.io.load_vars(
        exe,
        pretraining_params_path,
        main_program=main_program,
        predicate=_existed_params)
    print("Load pretraining parameters from {}.".format(
        pretraining_params_path))