# 迁移学习 迁移学习为利用已有知识,对新知识进行学习。例如利用ImageNet分类预训练模型做初始化来训练检测模型,利用在COCO数据集上的检测模型做初始化来训练基于PascalVOC数据集的检测模型。 在进行迁移学习时,由于会使用不同的数据集,数据类别数与COCO/VOC数据类别不同,导致在加载PaddlePaddle开源模型时,与类别数相关的权重(例如分类模块的fc层)会出现维度不匹配的问题;另外,如果需要结构更加复杂的模型,需要对已有开源模型结构进行调整,对应权重也需要选择性加载。因此,需要检测库能够指定参数字段,在加载模型时不加载匹配的权重。 ## PaddleDetection进行迁移学习 在迁移学习中,对预训练模型进行选择性加载,可通过在 YMAL 配置文件中通过设置 finetune_exclude_pretrained_params字段,也可通过在 train.py的启动参数中设置 -o finetune_exclude_pretrained_params。 ```python export PYTHONPATH=$PYTHONPATH:. export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -u tools/train.py -c configs/faster_rcnn_r50_1x.yml \ -o pretrain_weights=https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_1x.tar \ finetune_exclude_pretrained_params=['cls_score','bbox_pred'] ``` * 说明:
1. pretrain\_weights的路径为COCO数据集上开源的faster RCNN模型链接,完整模型链接可参考[MODEL_ZOO](MODEL_ZOO_cn.md)
2. finetune\_exclude\_pretrained\_params中设置参数字段,如果参数名能够匹配以上参数字段(通配符匹配方式),则在模型加载时忽略该参数。 如果用户需要利用自己的数据进行finetune,模型结构不变,只需要忽略与类别数相关的参数。PaddleDetection给出了不同模型类型所对应的忽略参数字段。如下表所示:</br> | 模型类型 | 忽略参数字段 | | :----------------: | :---------------------------------------: | | Faster RCNN | cls\_score, bbox\_pred | | Cascade RCNN | cls\_score, bbox\_pred | | Mask RCNN | cls\_score, bbox\_pred, mask\_fcn\_logits | | Cascade-Mask RCNN | cls\_score, bbox\_pred, mask\_fcn\_logits | | RetinaNet | retnet\_cls\_pred\_fpn | | SSD | ^conv2d\_ | | YOLOv3 | yolo\_output |