base_layers.py 2.2 KB
Newer Older
王肖 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
base layers
"""

from paddle.fluid import layers
from paddle.fluid.dygraph import Layer
from paddle.fluid.dygraph import GRUUnit
from paddle.fluid.dygraph.base import to_variable




# import numpy as np
# import logging


class DynamicGRU(Layer):
    def __init__(self,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 candidate_activation='tanh',
                 h_0=None,
                 origin_mode=False,
                 init_size = None):
        super(DynamicGRU, self).__init__()
        self.gru_unit = GRUUnit(
            size * 3,
            param_attr=param_attr,
            bias_attr=bias_attr,
            activation=candidate_activation,
            gate_activation=gate_activation,
            origin_mode=origin_mode)
        self.size = size
        self.h_0 = h_0
        self.is_reverse = is_reverse
    def forward(self, inputs):
        hidden = self.h_0
        res = []
        for i in range(inputs.shape[1]):
            if self.is_reverse:
                i = inputs.shape[1] - 1 - i
            input_ = inputs[ :, i:i+1, :]
            input_ = fluid.layers.reshape(input_, [-1, input_.shape[2]], inplace=False)
            hidden, reset, gate = self.gru_unit(input_, hidden)
            hidden_ = fluid.layers.reshape(hidden, [-1, 1, hidden.shape[1]], inplace=False)
            res.append(hidden_)
        if self.is_reverse:
            res = res[::-1]
        res = fluid.layers.concat(res, axis=1)
        return res