train.py 11.3 KB
Newer Older
0
0YuanZhang0 已提交
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. 
Y
Yibing Liu 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Finetuning on dialogue tasks."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
import time
import numpy as np
import multiprocessing

import paddle
import paddle.fluid as fluid

0
0YuanZhang0 已提交
29 30 31 32 33 34 35 36
from dgu_net import create_net
import dgu.reader as reader
from dgu.optimization import optimization
import dgu.define_paradigm as define_paradigm 
from dgu.utils.configure import PDConfig
from dgu.utils.input_field import InputField
from dgu.utils.model_check import check_cuda
import dgu.utils.save_load_io as save_load_io
Y
Yibing Liu 已提交
37 38


0
0YuanZhang0 已提交
39 40 41
def do_train(args):
    """train function"""
    
Y
Yibing Liu 已提交
42 43 44 45 46 47 48 49 50 51 52 53
    task_name = args.task_name.lower()
    paradigm_inst = define_paradigm.Paradigm(task_name)

    processors = {
        'udc': reader.UDCProcessor,
        'swda': reader.SWDAProcessor,
        'mrda': reader.MRDAProcessor,
        'atis_slot': reader.ATISSlotProcessor,
        'atis_intent': reader.ATISIntentProcessor,
        'dstc2': reader.DSTC2Processor,
    }

0
0YuanZhang0 已提交
54 55
    train_prog = fluid.default_main_program()
    startup_prog = fluid.default_startup_program()
Y
Yibing Liu 已提交
56

0
0YuanZhang0 已提交
57 58
    with fluid.program_guard(train_prog, startup_prog): 
        train_prog.random_seed = args.random_seed
Y
Yibing Liu 已提交
59
        startup_prog.random_seed = args.random_seed
0
0YuanZhang0 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
        with fluid.unique_name.guard(): 
            num_labels = len(processors[task_name].get_labels())

            src_ids = fluid.layers.data(
                        name='src_ids', shape=[args.max_seq_len, 1], dtype='int64')
            pos_ids = fluid.layers.data(
                        name='pos_ids', shape=[args.max_seq_len, 1], dtype='int64')
            sent_ids = fluid.layers.data(
                        name='sent_ids', shape=[args.max_seq_len, 1], dtype='int64')
            input_mask = fluid.layers.data(
                        name='input_mask', shape=[args.max_seq_len, 1], dtype='float32')
            if args.task_name == 'atis_slot': 
                labels = fluid.layers.data(
                        name='labels', shape=[args.max_seq_len], dtype='int64')
            elif args.task_name in ['dstc2']:
                labels = fluid.layers.data(
                        name='labels', shape=[num_labels], dtype='int64')
            else: 
                labels = fluid.layers.data(
                        name='labels', shape=[1], dtype='int64')
            
            input_inst = [src_ids, pos_ids, sent_ids, input_mask, labels]
            input_field = InputField(input_inst)
            data_reader = fluid.io.PyReader(feed_list=input_inst, 
                        capacity=4, iterable=False)
            processor = processors[task_name](data_dir=args.data_dir,
                                              vocab_path=args.vocab_path,
                                              max_seq_len=args.max_seq_len,
                                              do_lower_case=args.do_lower_case,
                                              in_tokens=args.in_tokens,
                                              task_name=task_name,
                                              random_seed=args.random_seed)

            results = create_net(
                    is_training=True, 
                    model_input=input_field, 
Y
Yibing Liu 已提交
96
                    num_labels=num_labels,
0
0YuanZhang0 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
                    paradigm_inst=paradigm_inst,
                    args=args)
            
            loss = results.get("loss", None)
            probs = results.get("probs", None)
            accuracy = results.get("accuracy", None)
            num_seqs = results.get("num_seqs", None)

            loss.persistable = True
            probs.persistable = True
            if accuracy: 
                accuracy.persistable = True
            num_seqs.persistable = True

            if args.use_cuda: 
                dev_count = fluid.core.get_cuda_device_count()
            else: 
                dev_count = int(
                    os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
            
            batch_generator = processor.data_generator(
                batch_size=args.batch_size,
                phase='train',
                shuffle=True)
            num_train_examples = processor.get_num_examples(phase='train')
            
            if args.in_tokens:
                max_train_steps = args.epoch * num_train_examples // (
                    args.batch_size // args.max_seq_len) // dev_count
P
pkpk 已提交
126
            else:
0
0YuanZhang0 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
                max_train_steps = args.epoch * num_train_examples // args.batch_size // dev_count

            warmup_steps = int(max_train_steps * args.warmup_proportion)
            print("Num train examples: %d" % num_train_examples)
            print("Max train steps: %d" % max_train_steps)
            print("Num warmup steps: %d" % warmup_steps)

            optimizor = optimization(
                loss=loss,
                warmup_steps=warmup_steps,
                num_train_steps=max_train_steps,
                learning_rate=args.learning_rate,
                train_program=train_prog,
                startup_prog=startup_prog,
                weight_decay=args.weight_decay,
                scheduler=args.lr_scheduler,
0
0YuanZhang0 已提交
143
                use_fp16=False,
0
0YuanZhang0 已提交
144 145 146
                loss_scaling=args.loss_scaling)

    data_reader.decorate_batch_generator(batch_generator)
Y
Yibing Liu 已提交
147

0
0YuanZhang0 已提交
148 149
    if args.use_cuda:
        place = fluid.CUDAPlace(int(os.getenv('FLAGS_selected_gpus', '0')))
P
pkpk 已提交
150
    else:
0
0YuanZhang0 已提交
151 152 153 154
        place = fluid.CPUPlace()
    
    exe = fluid.Executor(place)
    exe.run(startup_prog)
P
pkpk 已提交
155

0
0YuanZhang0 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
    assert (args.init_from_checkpoint == "") or (
            args.init_from_pretrain_model == "")

    # init from some checkpoint, to resume the previous training
    if args.init_from_checkpoint: 
        save_load_io.init_from_checkpoint(args, exe, train_prog)
    
    # init from some pretrain models, to better solve the current task
    if args.init_from_pretrain_model: 
        save_load_io.init_from_pretrain_model(args, exe, train_prog)

    build_strategy = fluid.compiler.BuildStrategy()
    compiled_train_prog = fluid.CompiledProgram(train_prog).with_data_parallel(
                loss_name=loss.name, build_strategy=build_strategy)
    
    # start training
    steps = 0
    time_begin = time.time()
    ce_info = []
    for epoch_step in range(args.epoch): 
        data_reader.start()
Y
Yibing Liu 已提交
177
        while True:
P
pkpk 已提交
178
            try:
Y
Yibing Liu 已提交
179
                steps += 1
0
0YuanZhang0 已提交
180
                if steps % args.print_steps == 0:
P
pkpk 已提交
181 182 183 184 185 186
                    if warmup_steps <= 0:
                        if accuracy is not None:
                            fetch_list = [
                                loss.name, accuracy.name, num_seqs.name
                            ]
                        else:
Y
Yibing Liu 已提交
187
                            fetch_list = [loss.name, num_seqs.name]
P
pkpk 已提交
188
                    else:
Y
Yibing Liu 已提交
189 190
                        if accuracy is not None:
                            fetch_list = [
0
0YuanZhang0 已提交
191
                                loss.name, accuracy.name, optimizor.name,
Y
Yibing Liu 已提交
192 193
                                num_seqs.name
                            ]
P
pkpk 已提交
194 195
                        else:
                            fetch_list = [
0
0YuanZhang0 已提交
196
                                loss.name, optimizor.name, num_seqs.name
P
pkpk 已提交
197 198
                            ]
                else:
Y
Yibing Liu 已提交
199 200
                    fetch_list = []

0
0YuanZhang0 已提交
201
                outputs = exe.run(compiled_train_prog, fetch_list=fetch_list)
Y
Yibing Liu 已提交
202

0
0YuanZhang0 已提交
203
                if steps % args.print_steps == 0:
P
pkpk 已提交
204 205
                    if warmup_steps <= 0:
                        if accuracy is not None:
Y
Yibing Liu 已提交
206
                            np_loss, np_acc, np_num_seqs = outputs
P
pkpk 已提交
207
                        else:
Y
Yibing Liu 已提交
208
                            np_loss, np_num_seqs = outputs
P
pkpk 已提交
209
                    else:
Y
Yibing Liu 已提交
210 211
                        if accuracy is not None:
                            np_loss, np_acc, np_lr, np_num_seqs = outputs
P
pkpk 已提交
212
                        else:
Y
Yibing Liu 已提交
213 214 215 216
                            np_loss, np_lr, np_num_seqs = outputs

                    time_end = time.time()
                    used_time = time_end - time_begin
P
pkpk 已提交
217 218
                    current_time = time.strftime('%Y-%m-%d %H:%M:%S',
                                                 time.localtime(time.time()))
0
0YuanZhang0 已提交
219
                    if accuracy is not None: 
P
pkpk 已提交
220
                        print(
0
0YuanZhang0 已提交
221
                            "%s epoch: %d, step: %d, ave loss: %f, "
P
pkpk 已提交
222
                            "ave acc: %f, speed: %f steps/s" %
0
0YuanZhang0 已提交
223 224 225 226
                            (current_time, epoch_step, steps,
                             np.mean(np_loss),
                             np.mean(np_acc),
                             args.print_steps / used_time))
P
pkpk 已提交
227
                        ce_info.append([
0
0YuanZhang0 已提交
228 229 230
                            np.mean(np_loss),
                            np.mean(np_acc),
                            args.print_steps / used_time
P
pkpk 已提交
231 232 233
                        ])
                    else:
                        print(
0
0YuanZhang0 已提交
234
                            "%s epoch: %d, step: %d, ave loss: %f, "
Y
Yibing Liu 已提交
235
                            "speed: %f steps/s" %
0
0YuanZhang0 已提交
236 237 238
                            (current_time, epoch_step, steps,
                             np.mean(np_loss),
                             args.print_steps / used_time))
P
pkpk 已提交
239
                        ce_info.append([
0
0YuanZhang0 已提交
240 241
                            np.mean(np_loss),
                            args.print_steps / used_time
P
pkpk 已提交
242
                        ])
Y
Yibing Liu 已提交
243 244
                    time_begin = time.time()

0
0YuanZhang0 已提交
245 246 247 248 249 250 251 252 253
                if steps % args.save_steps == 0: 
                    save_path = "step_" + str(steps)
                    if args.save_checkpoint: 
                        save_load_io.save_checkpoint(args, exe, train_prog, save_path)
                    if args.save_param:
                        save_load_io.save_param(args, exe, train_prog, save_path)
                 
            except fluid.core.EOFException:  
                data_reader.reset()
Y
Yibing Liu 已提交
254
                break
0
0YuanZhang0 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268
    if args.save_checkpoint: 
        save_load_io.save_checkpoint(args, exe, train_prog, "step_final")
    if args.save_param:
        save_load_io.save_param(args, exe, train_prog, "step_final")

    def get_cards():
        num = 0
        cards = os.environ.get('CUDA_VISIBLE_DEVICES', '')
        print("test_cards", cards)
        if cards != '':
            num = len(cards.split(","))
        return num
    
    if args.enable_ce:
Z
zhengya01 已提交
269
        card_num = get_cards()
0
0YuanZhang0 已提交
270
        print("test_card_num", card_num)
Z
zhengya01 已提交
271 272 273 274 275 276 277 278 279 280
        ce_loss = 0
        ce_acc = 0
        ce_time = 0
        try:
            ce_loss = ce_info[-2][0]
            ce_acc = ce_info[-2][1]
            ce_time = ce_info[-2][2]
        except:
            print("ce info error")
        print("kpis\teach_step_duration_%s_card%s\t%s" %
P
pkpk 已提交
281 282 283
              (task_name, card_num, ce_time))
        print("kpis\ttrain_loss_%s_card%s\t%f" % (task_name, card_num, ce_loss))
        print("kpis\ttrain_acc_%s_card%s\t%f" % (task_name, card_num, ce_acc))
Z
zhengya01 已提交
284 285


0
0YuanZhang0 已提交
286 287 288 289 290
if __name__ == '__main__': 
    
    args = PDConfig(yaml_file="./data/config/dgu.yaml")
    args.build()
    args.Print()
P
pkpk 已提交
291 292 293

    check_cuda(args.use_cuda)

0
0YuanZhang0 已提交
294
    do_train(args)