CGAN.py 8.8 KB
Newer Older
L
lvmengsi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from network.CGAN_network import CGAN_model
from util import utility

import sys
import six
import os
import numpy as np
import time
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
import paddle.fluid as fluid


class GTrainer():
    def __init__(self, input, conditions, cfg):
        self.program = fluid.default_main_program().clone()
        with fluid.program_guard(self.program):
L
lvmengsi 已提交
36
            model = CGAN_model(cfg.batch_size)
L
lvmengsi 已提交
37
            self.fake = model.network_G(input, conditions, name="G")
L
lvmengsi 已提交
38
            self.fake.persistable = True
L
lvmengsi 已提交
39
            self.infer_program = self.program.clone(for_test=True)
L
lvmengsi 已提交
40 41 42 43 44 45
            d_fake = model.network_D(self.fake, conditions, name="D")
            fake_labels = fluid.layers.fill_constant_batch_size_like(
                input=input, dtype='float32', shape=[-1, 1], value=1.0)
            self.g_loss = fluid.layers.reduce_mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(
                    x=d_fake, label=fake_labels))
L
lvmengsi 已提交
46
            self.g_loss.persistable = True
L
lvmengsi 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

            vars = []
            for var in self.program.list_vars():
                if fluid.io.is_parameter(var) and (var.name.startswith("G")):
                    vars.append(var.name)

            optimizer = fluid.optimizer.Adam(
                learning_rate=cfg.learning_rate, beta1=0.5, name="net_G")
            optimizer.minimize(self.g_loss, parameter_list=vars)


class DTrainer():
    def __init__(self, input, conditions, labels, cfg):
        self.program = fluid.default_main_program().clone()
        with fluid.program_guard(self.program):
L
lvmengsi 已提交
62
            model = CGAN_model(cfg.batch_size)
L
lvmengsi 已提交
63 64 65 66
            d_logit = model.network_D(input, conditions, name="D")
            self.d_loss = fluid.layers.reduce_mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(
                    x=d_logit, label=labels))
L
lvmengsi 已提交
67
            self.d_loss.persistable = True
L
lvmengsi 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
            vars = []
            for var in self.program.list_vars():
                if fluid.io.is_parameter(var) and (var.name.startswith("D")):
                    vars.append(var.name)

            optimizer = fluid.optimizer.Adam(
                learning_rate=cfg.learning_rate, beta1=0.5, name="net_D")
            optimizer.minimize(self.d_loss, parameter_list=vars)


class CGAN(object):
    def add_special_args(self, parser):
        parser.add_argument(
            '--noise_size', type=int, default=100, help="the noise dimension")

        return parser

    def __init__(self, cfg=None, train_reader=None):
        self.cfg = cfg
        self.train_reader = train_reader

    def build_model(self):

        img = fluid.layers.data(name='img', shape=[784], dtype='float32')
        condition = fluid.layers.data(
            name='condition', shape=[1], dtype='float32')
        noise = fluid.layers.data(
            name='noise', shape=[self.cfg.noise_size], dtype='float32')
        label = fluid.layers.data(name='label', shape=[1], dtype='float32')

        g_trainer = GTrainer(noise, condition, self.cfg)
        d_trainer = DTrainer(img, condition, label, self.cfg)

        # prepare environment
        place = fluid.CUDAPlace(0) if self.cfg.use_gpu else fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())

        const_n = np.random.uniform(
            low=-1.0, high=1.0,
            size=[self.cfg.batch_size, self.cfg.noise_size]).astype('float32')

        if self.cfg.init_model:
            utility.init_checkpoints(self.cfg, exe, g_trainer, "net_G")
            utility.init_checkpoints(self.cfg, exe, d_trainer, "net_D")

        build_strategy = fluid.BuildStrategy()

        g_trainer_program = fluid.CompiledProgram(
            g_trainer.program).with_data_parallel(
                loss_name=g_trainer.g_loss.name, build_strategy=build_strategy)
        d_trainer_program = fluid.CompiledProgram(
            d_trainer.program).with_data_parallel(
                loss_name=d_trainer.d_loss.name, build_strategy=build_strategy)

L
lvmengsi 已提交
123
        if self.cfg.run_test:
L
lvmengsi 已提交
124
            image_path = os.path.join(self.cfg.output, 'test')
L
lvmengsi 已提交
125 126
            if not os.path.exists(image_path):
                os.makedirs(image_path)
L
lvmengsi 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
        t_time = 0
        for epoch_id in range(self.cfg.epoch):
            for batch_id, data in enumerate(self.train_reader()):
                if len(data) != self.cfg.batch_size:
                    continue

                noise_data = np.random.uniform(
                    low=-1.0,
                    high=1.0,
                    size=[self.cfg.batch_size, self.cfg.noise_size]).astype(
                        'float32')
                real_image = np.array(list(map(lambda x: x[0], data))).reshape(
                    [-1, 784]).astype('float32')
                condition_data = np.array([x[1] for x in data]).reshape(
                    [-1, 1]).astype('float32')
                real_label = np.ones(
                    shape=[real_image.shape[0], 1], dtype='float32')
                fake_label = np.zeros(
                    shape=[real_image.shape[0], 1], dtype='float32')
                s_time = time.time()

                generate_image = exe.run(
                    g_trainer.infer_program,
                    feed={'noise': noise_data,
                          'condition': condition_data},
                    fetch_list=[g_trainer.fake])

                d_real_loss = exe.run(d_trainer_program,
                                      feed={
                                          'img': real_image,
                                          'condition': condition_data,
                                          'label': real_label
                                      },
                                      fetch_list=[d_trainer.d_loss])[0]
                d_fake_loss = exe.run(d_trainer_program,
                                      feed={
L
lvmengsi 已提交
163
                                          'img': generate_image[0],
L
lvmengsi 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
                                          'condition': condition_data,
                                          'label': fake_label
                                      },
                                      fetch_list=[d_trainer.d_loss])[0]
                d_loss = d_real_loss + d_fake_loss

                for _ in six.moves.xrange(self.cfg.num_generator_time):
                    g_loss = exe.run(g_trainer_program,
                                     feed={
                                         'noise': noise_data,
                                         'condition': condition_data
                                     },
                                     fetch_list=[g_trainer.g_loss])[0]

                batch_time = time.time() - s_time
L
lvmengsi 已提交
179 180 181 182 183
                if batch_id % self.cfg.print_freq == 0:
                    print(
                        'Epoch ID: {} Batch ID: {} D_loss: {} G_loss: {} Batch_time_cost: {}'.
                        format(epoch_id, batch_id, d_loss[0], g_loss[0],
                               batch_time))
L
lvmengsi 已提交
184 185
                t_time += batch_time

L
lvmengsi 已提交
186
                if self.cfg.run_test:
L
lvmengsi 已提交
187 188 189 190
                    generate_const_image = exe.run(
                        g_trainer.infer_program,
                        feed={'noise': const_n,
                              'condition': condition_data},
191
                        fetch_list=[g_trainer.fake])[0]
L
lvmengsi 已提交
192 193 194 195 196 197 198 199

                    generate_image_reshape = np.reshape(generate_const_image, (
                        self.cfg.batch_size, -1))
                    total_images = np.concatenate(
                        [real_image, generate_image_reshape])
                    fig = utility.plot(total_images)
                    plt.title('Epoch ID={}, Batch ID={}'.format(epoch_id,
                                                                batch_id))
L
lvmengsi 已提交
200
                    img_name = '{:04d}_{:04d}.png'.format(epoch_id, batch_id)
L
lvmengsi 已提交
201
                    plt.savefig(
L
lvmengsi 已提交
202
                        os.path.join(image_path, img_name), bbox_inches='tight')
L
lvmengsi 已提交
203 204 205 206 207
                    plt.close(fig)

            if self.cfg.save_checkpoints:
                utility.checkpoints(epoch_id, self.cfg, exe, g_trainer, "net_G")
                utility.checkpoints(epoch_id, self.cfg, exe, d_trainer, "net_D")