DCGAN.py 8.0 KB
Newer Older
L
lvmengsi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from network.DCGAN_network import DCGAN_model
from util import utility

import sys
import six
import os
import numpy as np
import time
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
import paddle.fluid as fluid


class GTrainer():
    def __init__(self, input, label, cfg):
        self.program = fluid.default_main_program().clone()
        with fluid.program_guard(self.program):
            model = DCGAN_model()
            self.fake = model.network_G(input, name='G')
L
lvmengsi 已提交
38
            self.fake.persistable = True
L
lvmengsi 已提交
39 40 41 42 43 44 45
            self.infer_program = self.program.clone()
            d_fake = model.network_D(self.fake, name="D")
            fake_labels = fluid.layers.fill_constant_batch_size_like(
                input, dtype='float32', shape=[-1, 1], value=1.0)
            self.g_loss = fluid.layers.reduce_mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(
                    x=d_fake, label=fake_labels))
L
lvmengsi 已提交
46
            self.g_loss.persistable = True
L
lvmengsi 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

            vars = []
            for var in self.program.list_vars():
                if fluid.io.is_parameter(var) and (var.name.startswith("G")):
                    vars.append(var.name)
            optimizer = fluid.optimizer.Adam(
                learning_rate=cfg.learning_rate, beta1=0.5, name="net_G")
            optimizer.minimize(self.g_loss, parameter_list=vars)


class DTrainer():
    def __init__(self, input, labels, cfg):
        self.program = fluid.default_main_program().clone()
        with fluid.program_guard(self.program):
            model = DCGAN_model()
            d_logit = model.network_D(input, name="D")
            self.d_loss = fluid.layers.reduce_mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(
                    x=d_logit, label=labels))
L
lvmengsi 已提交
66
            self.d_loss.persistable = True
L
lvmengsi 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
            vars = []
            for var in self.program.list_vars():
                if fluid.io.is_parameter(var) and (var.name.startswith("D")):
                    vars.append(var.name)

            optimizer = fluid.optimizer.Adam(
                learning_rate=cfg.learning_rate, beta1=0.5, name="net_D")
            optimizer.minimize(self.d_loss, parameter_list=vars)


class DCGAN(object):
    def add_special_args(self, parser):
        parser.add_argument(
            '--noise_size', type=int, default=100, help="the noise dimension")

        return parser

L
lvmengsi 已提交
84
    def __init__(self, cfg=None, train_reader=None):
L
lvmengsi 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
        self.cfg = cfg
        self.train_reader = train_reader

    def build_model(self):
        img = fluid.layers.data(name='img', shape=[784], dtype='float32')
        noise = fluid.layers.data(
            name='noise', shape=[self.cfg.noise_size], dtype='float32')
        label = fluid.layers.data(name='label', shape=[1], dtype='float32')

        g_trainer = GTrainer(noise, label, self.cfg)
        d_trainer = DTrainer(img, label, self.cfg)

        # prepare enviorment
        place = fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())

        const_n = np.random.uniform(
            low=-1.0, high=1.0,
            size=[self.cfg.batch_size, self.cfg.noise_size]).astype('float32')

        if self.cfg.init_model:
            utility.init_checkpoints(self.cfg, exe, g_trainer, "net_G")
            utility.init_checkpoints(self.cfg, exe, d_trainer, "net_D")

L
lvmengsi 已提交
110
        ### memory optim
L
lvmengsi 已提交
111 112
        build_strategy = fluid.BuildStrategy()
        build_strategy.enable_inplace = True
L
lvmengsi 已提交
113
        build_strategy.memory_optimize = False
L
lvmengsi 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168

        g_trainer_program = fluid.CompiledProgram(
            g_trainer.program).with_data_parallel(
                loss_name=g_trainer.g_loss.name, build_strategy=build_strategy)
        d_trainer_program = fluid.CompiledProgram(
            d_trainer.program).with_data_parallel(
                loss_name=d_trainer.d_loss.name, build_strategy=build_strategy)

        t_time = 0
        losses = [[], []]
        for epoch_id in range(self.cfg.epoch):
            for batch_id, data in enumerate(self.train_reader()):
                if len(data) != self.cfg.batch_size:
                    continue

                noise_data = np.random.uniform(
                    low=-1.0,
                    high=1.0,
                    size=[self.cfg.batch_size, self.cfg.noise_size]).astype(
                        'float32')
                real_image = np.array(list(map(lambda x: x[0], data))).reshape(
                    [-1, 784]).astype('float32')
                real_label = np.ones(
                    shape=[real_image.shape[0], 1], dtype='float32')
                fake_label = np.zeros(
                    shape=[real_image.shape[0], 1], dtype='float32')
                s_time = time.time()

                generate_image = exe.run(g_trainer.infer_program,
                                         feed={'noise': noise_data},
                                         fetch_list=[g_trainer.fake])

                d_real_loss = exe.run(
                    d_trainer_program,
                    feed={'img': real_image,
                          'label': real_label},
                    fetch_list=[d_trainer.d_loss])[0]
                d_fake_loss = exe.run(
                    d_trainer_program,
                    feed={'img': generate_image,
                          'label': fake_label},
                    fetch_list=[d_trainer.d_loss])[0]
                d_loss = d_real_loss + d_fake_loss
                losses[1].append(d_loss)

                for _ in six.moves.xrange(self.cfg.num_generator_time):
                    g_loss = exe.run(g_trainer_program,
                                     feed={'noise': noise_data},
                                     fetch_list=[g_trainer.g_loss])[0]
                    losses[0].append(g_loss)

                batch_time = time.time() - s_time
                t_time += batch_time

                if batch_id % self.cfg.print_freq == 0:
L
lvmengsi 已提交
169
                    image_path = os.path.join(self.cfg.output, 'images')
L
lvmengsi 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
                    if not os.path.exists(image_path):
                        os.makedirs(image_path)
                    generate_const_image = exe.run(
                        g_trainer.infer_program,
                        feed={'noise': const_n},
                        fetch_list={g_trainer.fake})[0]

                    generate_image_reshape = np.reshape(generate_const_image, (
                        self.cfg.batch_size, -1))
                    total_images = np.concatenate(
                        [real_image, generate_image_reshape])
                    fig = utility.plot(total_images)
                    print(
                        'Epoch ID={} Batch ID={} D_loss={} G_loss={} Batch_time_cost={:.2f}'.
                        format(epoch_id, batch_id, d_loss[0], g_loss[0],
                               batch_time))
                    plt.title('Epoch ID={}, Batch ID={}'.format(epoch_id,
                                                                batch_id))
L
lvmengsi 已提交
188
                    img_name = '{:04d}_{:04d}.png'.format(epoch_id, batch_id)
L
lvmengsi 已提交
189
                    plt.savefig(
L
lvmengsi 已提交
190
                        os.path.join(image_path, img_name), bbox_inches='tight')
L
lvmengsi 已提交
191 192 193 194 195
                    plt.close(fig)

            if self.cfg.save_checkpoints:
                utility.checkpoints(epoch_id, self.cfg, exe, g_trainer, "net_G")
                utility.checkpoints(epoch_id, self.cfg, exe, d_trainer, "net_D")